

Eurove

Meeting your energy efficiency and IAQ requirements 09 JUNE 2021

10:00H (GST) | 11:30H (IST) | 14:00H (SST)

Moderator

EUROVENT EUROPEAN INDUSTRY ASSOCIATION

Markus Lattner

Managing Director, Eurovent Middle East

International Director, Eurovent

Organisers

Knowledge Partners

REHVA

Federation of European Heating, Ventilation and Air Conditioning Associations

ISHRAE

INSTITUTE OF EXCELLENCE

Delhi Chapter

Media Partner

Technicalities

File View Help -	05
Sound ck	
Computer audio Phone call	
Microphone (HD Webcam C510)	~
■ (3)	
Speakers (High Definition Aud	~
speakers (riigh beinnaon Adam	
Questions	1
[Enter a question for staff]	

Your GotoWebinar Control Panel:

- \rightarrow You are muted
- \rightarrow Ask us questions
- \rightarrow To leave the webinar
- \rightarrow Handouts available

Handouts

Eurovent Air Filters Guidebook

Eurovent Recommendation 4/23

Roadmap

1. Welcome remarks and introduction

- 2. ISO 16890: The global air filtration standard
- 3. Eurovent 4/23: Guidance to the application of ISO 16890

- 4. Energy efficiency and filter certification
- 5. Summary of key takeaways
- 6. Panel discussion and Q&A

JOINT EUROVEN

Speakers

Prabhat PK Goel Technical and Industry Advisor, Eurovent Certita Certification Lecturer at ISHRAE Institute of Excellence

Dr. Marc Schmidt Vice President Technologies Europe, AAF Chairman of the Eurovent Product Group 'Air Filters' Sylvain Courtey Technical Director, Eurovent Certita Certification

Vanshaj Kaul Country Representative India, Eurovent Certita Certification Public Policy professional

Guest panellist

Ilinca Nastase Associate Professor, Director of the Doctorate School, UTCB Co-Chair of Technology and Research Committee, REHVA

REHVA

REHVA COVID19 **GUIDANCE** version 4.1

Recommendation from the Nordic Ventilation Group

Criteria for room air cleaners for particulate matter

Portable air cleaners can be used to reduce the co tration of particulate matter in room air. They may abo reduce the risk of infections due to pathogens in the

indoor air, as a significant amount of viral material is spread as small droplets or dried droplets which behave

like small airborne particles. These viral particles can

be removed from room air using portable air cleaners, by circulating the air through the unit. To be safe and

effective the cleaner must fulfill certain performance criteria. If they produce ozone or hydrogen peroxide

For this, the following parameters must be considered

effect of the air cleaner on the indoor air quality.

The air purifier must meet all regulatory requirements and be approved from an electrical safety point of view

by the European Union or national authorities.

then they may nose safety concerns.

• Clean air delivery rate (CADR)

· Placement of the ait cleaner Service and maintenance
Generation of pollutants (the possible negative

such as orone generation).

General information

Noise
Energy efficiency

Operation
 Service

Introduction

Data which demonstrates the safe and effective pe formance of the unit must be obtained from third party testing and presented by a third-party certifica tion body. An example of a certification program that operated by Eurovent Certific Certification [1] and [2].

Clean air delivery rate (CADR) "Clean air delivery rate- CADR" is the air flow, free of specific pollutant, which is supplied to the room by

the cleaner. It can be estimated as a product of air flow through the unit and the removal efficiency of the unit for a specific pollutant (usually particulate matter) Regarding the removal efficiency of the cleaner, the most critical size for particulate matter is 0.3-0.5 µm

Particle removal efficiency is calculated by subtracting the measured average ratio of downstream-to-upstrea particle concentrations from unity.

CADR can be expressed for any other pollutant as well. Eurovent Certita Certification has identified [2] the following pollutants: particles of 0.3 µm to 0.5 µm, particles of 1.0 µm to 2.0 µm, particles of 3.0 µm to 5.0 µm size, Acetone, Acetaldehyde, Heptane, Toluene, Formaldehyde, Staphylococcus epidermidis, Aspergillus niger and Fel-DI cat allergen.

The effect of CADR for the unit(s) placed in the room on the overall level of pollutants present in the room depends on the size and ventilation rate (outdoor air) of the room

To achieve a meaningful additional reduction of viral particles in the indoor air CADR (measured for particle size of 0.3-0.5 µm) should be two times greater than the outdoor air flow by the ventilation system [2] in rooms with a ventilation rate more than 1 ACH. This CADR reduces the concentration of a pollutant by 70%. In rooms with a lower ventilation rate (lower than 1 ACH) the CADR must be at least 2 ACH.

REHVA Journal - April 2021 37

Safe operation of buildings and HVAC systems during the COVID-19 pandemic (v1 autumn 2020)

Module 1

The first module of the course aims at familiarising the participants with the scientific concepts of SARS-COV-2 transmission, risk mitigation and the key role of air quality, air distribution solutions and adequate ventilation in infection control.

1.1 Boost your IQ on IAQ & COVID-19

1.1 provides a general overview of the fundamentals and definitions of Indoor Air Quality (IAQ) and Indoor environmental Quality (IEQ), along with its relevance to the COVID-19 pandemic, highlighting some real-life examples

1.2 COVID-19 in the light of IAQ concepts

1.2 goes deeper in the nature of the virus and its physics, such as the relation between the size of the droplet and its behaviour in space.

1.3 COVID-19 transmission routes, airborne transmission and infection control pyramid

1.3 explains the different transmission routes of the virus, providing a further analysis on the airborne route and virus kinetics in indoor environments, underlining the important role of adequate ventilation.

1.3.1 Fecal-Oral Transmission

1.3.1 sheds light on the less known faecal-oral route of the virus and its unique characteristics, providing some evidence from anecdotic cases and practical recommendations to minimise transmission risk

1.4 The role of HVAC systems during COVID-19

1.4 analyses evidence of the significant role of source control of the virus, illustrating the impact of HVAC systems on reducing the risk of aerosol infection.

> REHVA - Rue Washington, 40 - 1050 Brussels - Belgiun Telephone: +32 2 514 11 71 + 0 mail: Infogrefina.eu VaT number: 86 0.086 234.086 Webbier www.refna.eu BHP Fortis Bank + Account number; 210 077 772 733 + 8K-8279 2100 7777 2733 - 8K- 00584528

Roadmap

1. Welcome remarks and introduction

- 2. ISO 16890: The global air filtration standard
- 3. Eurovent 4/23: Guidance to the application of ISO 16890

- 4. Energy efficiency and filter certification
- 5. Summary of key takeaways
- 6. Panel discussion and Q&A

JOINT EUROVEN

EUROVENT

ISO 16890: The global air filtration standard

Prabhat PK Goel

Technical and Industry Advisor, Eurovent Certita Certification

Lecturer at ISHRAE Institute of Excellence

Background

International Organization for Standardization

MIDDLE EAST

TTE

Federation of Environmental Trade Associations

BIS IS 7613: 1975(R2017)

METHOD OF TESTING PANEL TYPE AIR FILTERS FOR AIR CONDITIONING AND VENTILATION PURPOSES

Published date: 12-01-2013

Publisher: Bureau of Indian Standards

Basics

Let's first understand some basics

ISO 16890-1:2016

What is it all about?

And why is it so necessary to change!

Reasons for global preference for ISO 16890

Greater emphasis on Indoor Air Quality

- New medical findings
- Particulate matter
- Fine dust

- New medical findings Different approach to testing and classification
- Issued by ISO to improve IAQ with fine particulate matter
- Increased focus on 1 & 2.5 Microns particle size effects
- Comprehensive test procedure and classification method

Led to change in approach to 'Method of Air Filter Testing'

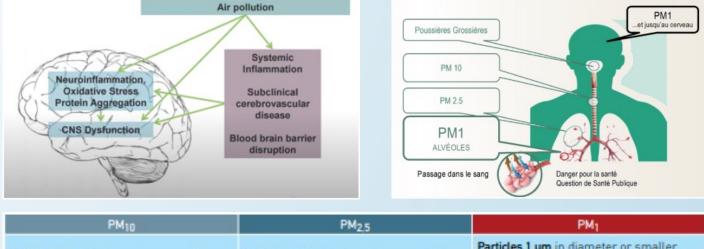
Reasons for global Preference for ISO 16890

Greater emphasis on what we breathe

New Medical Findings

International Organization for Standardization

Cardiovascular issues due to small particles


EUROVE

- Effect on nervous system due to small fine dust
- ISO standard take notice of this
- New regulations by WHO in keeping with Standards

Reasons for global WEBINAR preference for ISO 16890

Greater emphasis on Indoor Air Quality

🔎 EUROVEN

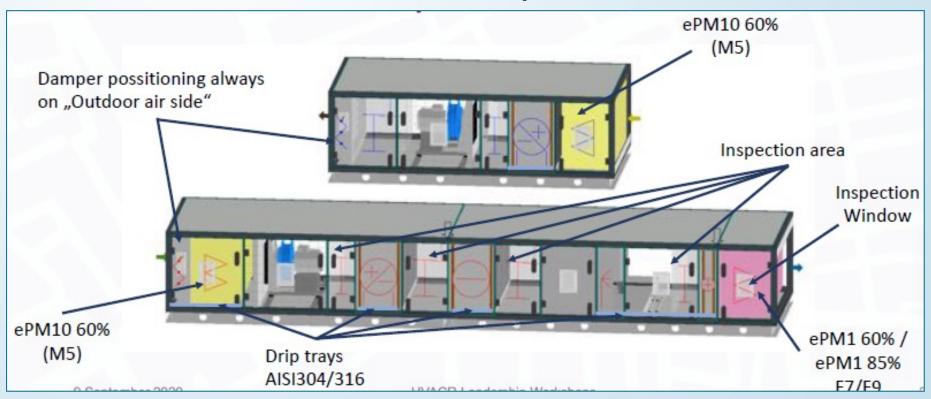
Particles 10 µm in diameter or smaller can reach the respiratory ducts and potentially cause decreased lung function. Particles 2,5 µm in diameter or smaller can penetrate the lungs and cause decreased lung function, skin and eye problems. Particles 1 µm in diameter or smaller are most dangerous. They are tiny enough to enter the bloodstream and lead to cancer, cardiovascular diseases and dementia.

EUROVENT

MIDDLE EAST

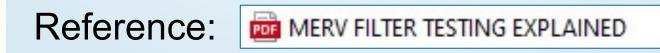
Eurover

Most parameters now related to PM1, PM2.5, PM10

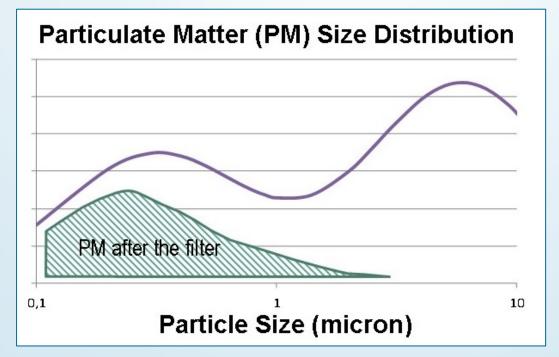

Deconstructing the nomenclature

Filter nomenclature example - ePMxx vv%

MERV filter ratings ASHRAE 52.1 & 52.2



Understanding how air filters work


The MERV (Minimum Efficiency Reporting Value) rating of a filter describes the size of the holes in the filter that allow air to pass through. The higher the Merv rating, the smaller the holes in the filter, the higher the efficiency.

ASHRAE in the process of modifications based on particle size

Reasons for global Preference for ISO 16890

Most IAQ standards now relate to PM1, PM2.5 and PM10 and their removal requirement

Parameters		Units	Classification		
			Class A	Class B	Class C
	CO ₂	ppm	Ambient + 350	Ambient + 500	Ambient + 700
Basic IAQ parameters	PM 2.5	µg/m ³	<15	<25	<25
	CO	ppm	<2	<9	< 9
	TVOC (equivalent to isobutylene)	µg/m³	<200	<400	<500
Complementary IAQ parameters	PM 10	µg/m ³	<50	<100	<100
	CH ₂ O	µg/m ³	<30	<100	-
	SO ₂	µg/m ³	<40	<80	-
	NO ₂	µg/m ³	<40	<80	-
	O3	µg/m ³	<50	<100	4.2
	Total Microbial Count	CFU/m ³	Indoor ≤ ambient	Indoor ≤ ambient	11
Occupant Sat	isfaction	%	90	80	-

🔎 EUROVEN

FUROVEN

ISHRAE IAQ Standard

Meeting your energy efficiency and IAQ requirements

 Provide guidelines on the selection of EN ISO 16890 rated air filter classes

🗢 EUROVEN⁻

EUROVENT

- Outline differences between EN 779 and EN ISO 16890
- Increase awareness on the energy efficiency of air filters

How to recommend WEBINAR the correct fresh air filter

Outdoor Air Quality – Eurovent Recommendation 4/23

seuroven 7

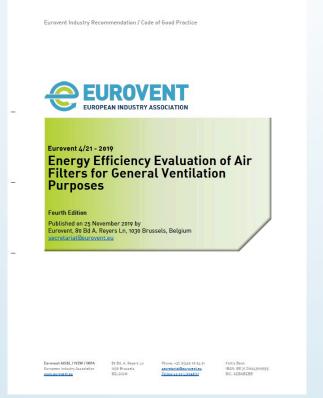
FUROVENT

Category	Description	Typical environment
ODA 1	OUTDOOR AIR. WHICH MAY BE ONLY TEMPORARILY DUSTY Applies where the World Health Organisation WHO (2005) guidelines are fulfilled (annual mean for $PM_{2,5} \le 10 \ \mu g/m^3$ and $PM_{10} \le 20 \ \mu g/m^3$).	
ODA 2	OUTDOOR AIR WITH HIGH CONCENTRATIONS OF PARTICULATE MATTER Applies where PM concentrations exceed the WHO guidelines by a factor of up to 1,5 (annual mean for $PM_{2,5} \le 15 \ \mu g/m^3$ and $PM_{10} \le 30 \ \mu g/m^3$].	
ODA 3	OUTDOOR AIR WITH VERY HIGH CONCENTRATIONS OF PARTICULATE MATTER Applies where PM concentrations exceed the WHO guidelines by a factor of greater than 1,5 (annual mean for $PM_{2,5} > 15 \ \mu g/m^3$ and $PM_{10} > 30 \ \mu g/m^3$).	

How to recommend

Indoor Air Quality – Eurovent Recommendation 4/23

SUP 2	Rooms for permanent occupation. Examples: Kindergardens, offices, hotels, residentia buildings, meeting rooms, exhibition halls, conference halls, theaters, cinemas, concert halls.
SUP 3	Rooms with temporary occupation. Examples: Storage, shopping centers, washing room server rooms, copier rooms.
SUP 4	Rooms with short-term occupation. Examples: restrooms, storage rooms stairways.
SUP 5	Rooms without occupation. Examples: Garbage room, data centers, undergroun



SUP 1	Applications with high hygienic demands. Examples: Hospitals, pharmaceutics, electronic and optical industry, supply air to clean rooms.	
SUP 2	Applications with medium hygienic demands. Examples: Food and beverage production.	
SUP 3	Applications with basic hygienic demands. Examples: Food and beverages production with a basic hygienic demand.	
SUP 4	Applications without hygienic demands. Examples: General production areas in the automotive industry.	

EUROVE

car parks.

Energy evaluation of air filters

 Define energy efficiency of air filters for general ventilation purposes

🔎 EUROVEN'

ELIDODEAN INDUSTRY ASSOCIATIO

EUROVENT

 Define energy efficiency evaluation methods

JOINT EUROVENT

<u></u>

 Implement the ISO 16890 classification and testing methods in place of EN 779

Replacement of old filters

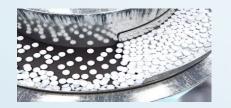
There is no equivalence between EN 779 & ISO filters - Quick guide for replacement

First determine from application your critical particle size

EN 779: 2012	EN ISO 16890 – range of actual measured average efficiencies		
Filter class	ePM ₁	ePM _{2,5}	ePM ₁₀
M5	5% - 35%	10% - 45%	40% - 70%
M6	10% - 40%	20% - 50%	60% - 80%
F7	40% - 65%	65% - 75%	80% - 90%
F8	65% - 90%	75% - 95%	90% - 100%
F9	80% - 90%	85% - 95%	90% - 100%

Pressemitteilung der Expertengruppe

Filterklasse nach EN 779	Filterklasse nach ISO 16890	Abscheide- leistung
M5	ISO ePM10	≥ 50 %
F7	ISO ePM2.5	≥ 65 %
oder:	ISO ePM1	≥ 50 %
F9	ISO ePM1	≥ 80 %


Empfehlung der Expertenarbeitsgruppe Luftfiltration zu Anforderungen an die neuen Luftfilter für Komfort-Raumlüftungsanlagen (Filterklasse nach ISO 16890 verglichen mit Filterklasse nach EN 779). In der letzten Filterstufe muss mindestens ein Filter ISO ePM1 \geq 50 % eingesetzt werden.

anuar 4. Schweizer Hygienetagung

Programme to help WEBINAR provide desired filtration level

Consulting engineer decides exact requirements

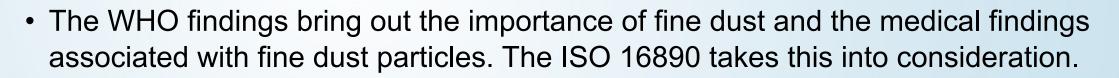
Identification: ECP 11 FIL Revision 0 – February 2020 (This version cancels and replaces any previous versions) Approbation date: 10/02/2020 Comes into effect from: 10/02/2020

🔎 EUROVE

Areas with good filtration requirement

Joint Eurovent Webinar - ISO 16890

Guidance



Programme to help provide desired filtration level

Conclusion

- ISO and WHO findings are based on PM1, PM2.5 and PM10. Environmental and IAQ standards globally refer to PM1, PM2.5 and PM10.
- Filter nomenclature needs to be easy to understand by all involved with IAQ and airside HVAC. Filter nomenclature should relate to particle size and the removal efficiency of the filter.
- With the addition of Eurovent Guidebooks and Recommendations, the programme becomes more holistic and enables engineers to select the correct filters for maintaining desired IAQ levels with data on energy spent annually to achieve the required IAQ.

Thank you!

Prabhat PK Goel

Technical and Industry Advisor, Eurovent Certita Certification

Lecturer at ISHRAE Institute of Excellence

pkgoel123@hotmail.com

Roadmap

- 1. Welcome remarks and introduction
- 2. ISO 16890: The global air filtration standard

3. Eurovent 4/23: Guidance to the application of ISO 16890

- 4. Energy efficiency and filter certification
- 5. Summary of key takeaways
- 6. Panel discussion and Q&A

JOINT EUROVEN

S FUROVENT

Eurovent 4/23: Guidance to the application of ISO 16890

Marc Schmidt, Ph.D.

Vice President Technologies Europe, AAF

Chairman of the Eurovent Product Group 'Air Filters'

은 EUROVENT MIDDLE EAST

EUROVENT 4/23 - 2020

SELECTION OF EN ISO 16890 RATED AIR FILTER CLASSES FOR GENERAL VENTILATION **APPLICATIONS**

THIRD EDITION

NOVEMBER 2020

Published on 1 November 2020 by Eurovent, 80 Bd A. Reyers Ln, 1030 Brussels, Belgium secretariat@eurovent.eu

DOCUMENT HISTORY	
Modifications	
PREFACE	
In a nutshell	
Authors	
Copyright	
Important remarks	
CONTENTS	
1. INTRODUCTION	
1.1 Importance of filtration	

1.1.1 Impact on health 112 Burden of diseases 1.2 Relevance of fine particulate matter ...

- 2. COMPARISON OF EN ISO 16890 AND EN 779 FILTER EFFICIENCY CLASSIFICATION.
- 3. COMPARISON OF EN 779 AND EN ISO 16890 RATED CLASSES OF THE SAME FILTERS.
- 4.3 Particulate Matter emission indoors... 4.4 Recommended filtration efficiency depending on outdoor and supply air category ... / / 1 Outdoor air categories 4.4.2 Supply air categories..... 4.5 Recommended minimum efficiencies .. 4.6 Additional recommendations concerning the protection of HVAC systems .. 5. ESTIMATION OF MULTI-STAGE FILTRATION CUMULATED EFFICIENCY ... 6 ENERGY EFFICIENCY OF EILTERS 7. SUMMARY 8. LITERATURE 9.1 Comparison of EN 779 and EN ISO 16890 rated filter classes ... 9.2 Additional recommendation on application

4 RECOMMENDATION ON EN ISO 16890

4.2 Ambient air pollution database.

FILTER CLASS SELECTION.

4.1 WHO thresholds

4 EUROVENT INDUSTRY RECOMMENDATION / CODE OF GOOD PRACTICE

2021-06-09

Eurovent Recommendation 4/23

Third edition, November 2020

EUROVENT EUROPEAN INDUSTRY ASSOCIATIO

www.eurovent.eu

ISO 16890 testing and classification

Step 1	Filter efficiency is measured on 0,3 to 10 μ m of the clean not conditioned filter.		
Step 2	The filter is conditioned (discharged) in an isopropanol vapor atmosphere to eliminate particle filtration based on electrostatic forces.		
Step 3	Filter efficiency is measured again on 0,3 to 10 μ m – now of the conditioned (discharged) filter.		
Step 4	Actual efficiency per PM size is calculated as the average of the conditioned <u>and</u> the unconditioned filter. Important: The filter needs to show a minimum efficiency of 50% for the unconditioned <u>and</u> the conditioned filter.		
Step 5	Values are allocated to ISO groups.ISO coarse> 10 μ mISO ePM100.3 μ m ≤ x ≤ 10 μ mISO ePM2.50.3 μ m ≤ x ≤ 2.5 μ mISO ePM10.3 μ m ≤ x ≤ 1 μ m		
Step 6	Reporting value is defined. The reporting value for the filter is the highest possible ISO group with at least 50% of efficiency – always rounded down in 5% steps.		

Example for filter classification

A filter is showing following average efficiency values:

Efficiency class	Value
ISO ePM ₁₀	89%
ISO ePM _{2,5}	63%
ISO ePM₁	49%

- Minimum efficiency of 50% is achieved for ISO ePM₁₀ and ISO ePM_{2,5} – with 49% requirement for ISO ePM₁ is not fulfilled
- Highest possible ISO group is therefore ISO ePM_{2,5}
- ISO ePM_{2,5} value of 63% is rounded down to 60%

As a result, the filter is classified as

an ISO ePM_{2,5} 60% filter

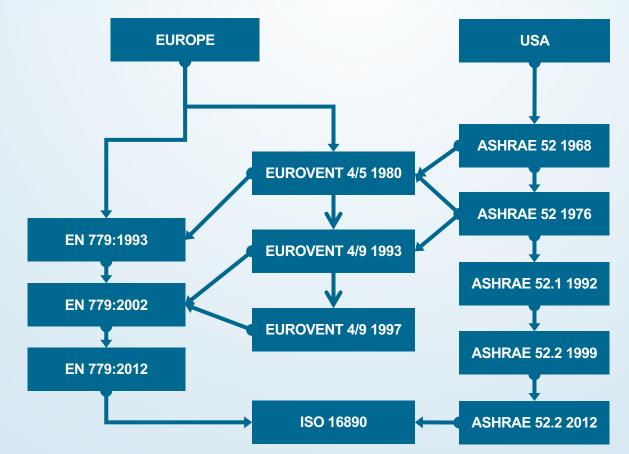
Meaning this filter is able to capture 60% of the particles smaller or equal 2,5 micron!

ISO 16890 test duct and discharge chamber

State-of-the-art ISO16890 test duct and discharge chamber in AAF filter lab in Trencin (Slovakia).

JOINT EUROVENT

WFRINAR

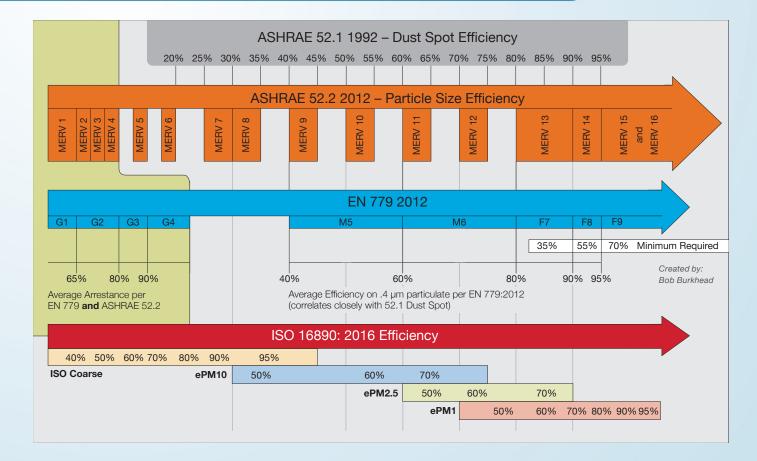

EUROV

History of filter standards

- In 1968, ASHRAE published the first unified standard which measured the arrestance as well as the dust-spot efficiency with artificial test dust.
- In 1976, ASHRAE Standard 52-76 was published introducing the atmospheric dust-spot efficiency.
 - Dust spot efficiency
 - Arrestance
 - Dust holding capacity
- Initial efficiency as function of a particle size (MERV: Minimum Efficiency Reporting Value).
- This standard had many improvements over time. Some of the improvements found in the ANSI/ASHRAE 52.2 standard. The improvement of the 52.2 standard allowed for the 52.1 standard to be retired.

Comparison of filter standards

Standard	ASHRAE 52.2:2012	ISO 16890	EN 779:2012
Aerosol	KCI	DEHS/KCL	DEHS
Aerosol Range	0.3 to 10.0 μm	DEHS: 0.3 to 1.0 μm KCL: 1.0 to 10 μm	0.4 µm
Particle sizes for rating	E1: 0.3 – 1.0 μm E2: 1.0 – 3.0 μm E3: 3.0 – 10.0 μm	PM1: 0.3 – 1.0 μm PM2.5: 0.3 – 2.5 μm PM10: 0.3 – 10 μm	0.4 µm
Loading Dust	ASHRAE 52.2 Dust	ISO Fine	ASHRAE 52.2 Dust
Conditioning	Optional: Appendix J (whole filter)	Mandatory: IPA Vapor (whole filter)	Mandatory: IPA Liquid (flat sheet)
Conditioning substance	0.03 µm KCL	IPA Vapor	IPA Liquid
Conditioning Time	Efficiency measured after minimum increments of 6.4x10 ⁷ particles/cm ³ min. Conditioning stops after no further significant drop in efficiency.	24 h	2 min soak
Classification	MERV 4 – MERV 16	ePM1, ePM2.5, ePM10	G1 – G4, M5 – M6, F7 – F9
Rating	Worst case	Average of initial and discharged condition	Worst case


Correlation – no conversion!

CER

Outdoor Air (ODA) categories

MIDDLE EAST

Category	Description	Typical environment
ODA1	Outdoor air which maybe only temporarily dusty Applies where the World Health Organization WHO (2005) guidelines are fulfilled:	
	Annual mean for PM2,5 \leq 10 µg/m ³ and PM10 \leq 20 µg/m ³ .	and a stand with the stand with the stand of the
ODA2	Oudoor air with high concentrations of particulate matter Applies where PM concentrations exceed the WHO guidelines by a factor of up to 1,5: Annual mean for PM2,5 \leq 15 µg/m ³ and PM10 \leq 30 µg/m ³ .	
ODA3	Oudoor air with very high concentrations of particulate matter Applies where PM concentrations exceed the WHO guidelines by a factor of more than 1,5: Annual mean for PM2,5 > 15 μg/m ³ and PM10 > 30 μg/m ³ .	

Supply Air (SUP) categories

MIDDLE EAST

Category	Description	General Ventilation	Industrial Ventilation
SUP1	WHO (2005) guidelines limit values multiplied by a factor x 0,25 (annual mean for PM2.5 \leq 2.5 µg/m ³ and PM10 \leq 5 µg/m ³).	-	Applications with high hygienic demands Hospitals, pharmaceutics, electronic and optical industry, supply air to clean rooms
SUP2	WHO (2005) guidelines limit values multiplied by a factor x 0,5 (annual mean for PM2.5 ≤ 5 μg/m³ and PM10 ≤ 10 μg/m³).	Rooms for permanent occupation Kindergardens, offices, hotels, residential buildings, meeting rooms, exhibition halls, conference halls, theaters, cinemas, concert halls	Applications with medium hygienic demands Food and beverage production
SUP3	WHO (2005) guidelines limit values multiplied by a factor x 0,75 (annual mean for PM2.5 \leq 7.5 µg/m ³ and PM10 \leq 15 µg/m ³).	Rooms with temporary occupation Storage, shopping centers, washing rooms, server rooms, copier rooms	Applications with basic hygienic demands Food and beverages production with a basic hygienic demand
SUP4	WHO (2005) guidelines limit values (annual mean for PM2.5 ≤ 10 μg/m³ and PM10 ≤ 20 μg/m³) .	Rooms with short-term occupation Restrooms, storage rooms stairways	Applications without hygienic demands General production areas in the automotive industry
SUP5	WHO (2005) guidelines limit values multiplied by a factor x 1.5 (annual mean for PM2.5 \leq 15 µg/m ³ and PM10 \leq 30 µg/m ³).	Rooms without occupation Garbage room, underground car parks	production areas of the heavy industry Steel mill, smelters, welding plants

Selecting filter efficiency

MIDDLE EAST

					Better SUP							
						Supply Air Quality (SUP)						
					SUP1*	SUP2*	SUP3**	SUP4	SUP5			
			Annua	l mean	PM2.5 ≤ 2.5 µg/m³ PM10 ≤ 5 µg/m³	PM2.5 ≤ 5 µg/m ³ PM10 ≤ 10 µg/m ³	PM2.5 ≤ 7.5 µg/m ³ PM10 ≤ 15 µg/m ³	PM2.5 ≤ 10 µg/m ³ PM10 ≤ 20 µg/m ³	PM2.5 ≤ 15 µg/m ³ PM10 ≤ 30 µg/m ³			
			PM2.5 μg/m3	ΡM10 μg/m3	ePM1	ePM1	ePM2.5	ePM10	ePM10			
PDA	Air DA)	ODA1	≤ 10	≤ 20	70%	50%	50%	50%	50%			
worse ODA	Outdoor Air Quality (ODA)	ODA2	≤ 15	≤ 30	80%	70%	70%	80%	50%			
Ň	Outdoo Quality	ODA3	> 15	> 30	90%	80%	80%	90%	80%			

*min. filtration requirement ePM1 50% at final stage | **min. filtration requirement ePM2.5 50% at final stage

Joint Eurovent Webinar - ISO 16890

Filter classes meeting

		SUP1	SUP2	SUP3	SUP4	SUP5
ODA1	2 stages*	ePM10 50% + ePM1 60%	ePM1 50%	ePM2,5 50%	ePM10 50%	ePM10 50%
	1 stage	ePM1 70%	-	-	-	-
ODA2	2 stages*	ePM1 50% + ePM1 60%	ePM10 50% + ePM1 60%	ePM1 50%	ePM2,5 50%	ePM10 50%
	1 stage	ePM1 80%	ePM1 70%	ePM2,5 70%	ePM10 80%	-
ODA3	2 stages*	ePM1 50% + ePM1 80%	ePM1 50% + ePM1 60%	ePM10 50% + ePM1 60%	ePM1 50%	ePM2,5 50%
	1 stage	ePM1 90%	ePM1 80%	ePM2,5 80%	ePM10 90%	ePM10 80%

EUROVENT

Euroven

🚑 EUROVENT

Handouts

Eurovent Air Filters Guidebook

Eurovent Recommendation 4/23

Thank you!

Marc Schmidt, Ph.D.

Vice President Technologies Europe, AAF

Chairman of the Eurovent Product Group 'Air Filters'

marc.schmidt@aafeurope.com

Roadmap

- 1. Welcome remarks and introduction
- 2. ISO 16890: The global air filtration standard

3. Eurovent 4/23: Guidance to the application of ISO 16890

- 4. Energy efficiency and filter certification
- 5. Summary of key takeaways
- 6. Panel discussion and Q&A

JOINT EUROVENT

Certification Energy and filtration efficiency

Sylvain Courtey

Technical Director

Eurovent Certita Certification

Why certification

It is not a question of manufacturers' size, country of origin or brand name

Building confidence

Filter certification by independent third party*:

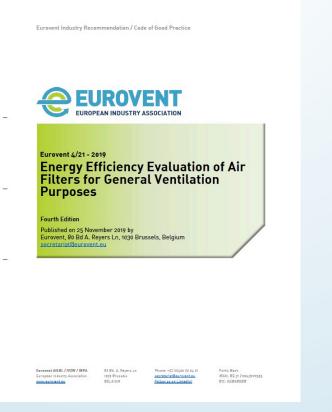
- Reduces risk of inefficient and unsafe ventilation system
- Guarantees original design's energy consumption
- Avoids performance downgrade by maintenance with non-certified spares

*Under ISO 17065 Accreditation

Filter and AHU Performance

HYGIENIC

Key milestones for holistic AHU certification



Background

- Eurovent has been the first organisation in the world to propose a method for rating the energy efficiency of air filters since 2013
- Eurovent 4/21 Energy Efficiency Evaluation of Air Filters for General Ventilation Purposes (2019) is currently the latest version of the document describing the method
- This method can be used in combination with **ISO 16890**

Principle

- Air filters cause energy consumption (W) due to their pressure drops (Δp)
- Following standard values are considered:
 - Nominal airflow: qv = 0,944 m³/s (3400 m³/h)
 - Operation time: *t* = 6000 h/a
 - Fan efficiency: $\eta = 0.5$

 $W = \frac{q_{\rm v} \cdot \Delta p \cdot t}{\eta \cdot 1000}$

$$W = 11.33 \frac{\text{kWh}/\text{a}}{\text{Pa}} \cdot \overline{\Delta p}$$

Testing method

- Carry out an ISO 16890-1 test at 0,944 m³/s for a full size filter (592mm x 592mm)
- 2. Load the filter with AC fine dust acc. to ISO 16890-3 until the amount of dust defined in the table on the right is reached
- 3. Calculate the average pressure drop
- 4. Calculate the yearly energy consumption W

ISO group	Amount of dust fed <i>M_x</i>
ISO <i>e</i> PM ₁	200g
ISO ePM _{2,5}	250g
ISO <i>e</i> PM ₁₀	400g

Energy classification

Energy efficiency classes are defined in the

Air Filter Technical Certification Rules:

	AEC in kWh/y for ePM1						AEC in kWh/y for ePM10						
	A+	Α	В	С	D	E		A+	Α	В	С	D	E
50 & 55%	800	900	1050	1400	2000	>2000	50 & 55%	450	550	650	750	1100	>1100
60 & 65%	850	950	1100	1450	2050	>2050	60 & 65%	500	600	700	850	1200	>1200
70 & 75%	950	1100	1250	1550	2150	>2150	70 & 75%	600	700	800	900	1300	>1300
80 & 85%	1050	1250	1450	1800	2400	>2400	80 & 85%	700	800	900	1000	1400	>1400
> 90%	1200	1400	1550	1900	2500	>2500	> 90%	800	900	1050	1400	1500	>1500

	AEC in kWh/y for ePM2.5					
	A+	Α	В	С	D	Е
50 & 55%	700	800	950	1300	1900	>1900
60 & 65%	750	850	1000	1350	1950	>1950
70 & 75%	800	900	1050	1400	2000	>2000
80 & 85%	900	1000	1200	1500	2100	>2100
> 90%	1000	1100	1300	1600	2200	>2200

🔁 EUROVENT

MIDDLE EAST

Eurover

Certita

MANUFACTURER

Range name Model name

seuroven 7

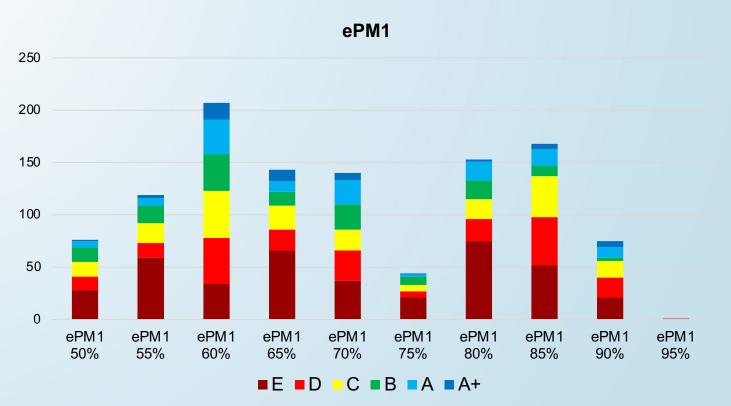
ELIDODEAN INDUSTRY ASSOCIATIO

www.eurovent-cert	fication.com
AIR FILTERS	ISO ePM ₁ xx%
OTHER LANGUAGE OTHER LANGUAGE	EN ISO 16890-1: 2016
Nominal airflow:	0.000 m ³ /s
Efficiency :	ePM1 00 %
Minimum efficiency :	ePM _{1, min} 00 %
Annual Energy Consumption:	0000 kWh/annum
A+ A B C D	A+ 2019
E THRESHOLD REFERENCE SCALE	YEAR : 2019

JOINT EUROVENT

WFRINAR

Ē


Analysis

Distribution of energy efficiency classes A+ 3% 9% Α 11% В С 16% D 18% Е 42%

Conclusion

Selection rules:

- Define the target filter efficiency group (ePM1, ePM2.5, ePM10) and efficiency value in % (e.g. using Eurovent 4/23)
- 2. Define the target energy efficiency class (A+, A, B, etc.)
- 3. Use new Eurovent Certita Certification online selection tool for certified air filters

Air filters X Air filters	x	
Product family 🗸	Basic design	Basic dosign *
Brand	Media	Filter Media *
Nodel name / Certificate Nº	Nominal airflow rate	Nominal Airflow Rate * m/s
ldvanced learch criteria	Filter class according to ISO 16890	Filter class acc. to ISOIt +
lelp on search criteria?	Energy efficiency class	Energy Efficiency Class +

Thank you!

Sylvain Courtey

Technical Director

Eurovent Certita Certification

s.courtey@eurovent-certification.com

Roadmap

- 1. Welcome remarks and introduction
- 2. ISO 16890: The global air filtration standard

3. Eurovent 4/23: Guidance to the application of ISO 16890

- 4. Energy efficiency and filter certification
- 5. Summary of key takeaways
- 6. Panel discussion and Q&A

JOINT EUROVENT

Key takeaways

Vanshaj Kaul

Country Representative India, Eurovent Certita Certification

Public Policy professional

- Health concerns have been rising and all stakeholders now recognise the importance of the air we breathe.
- People spend 90% of their time indoors, therefore focus on IAQ and relating to PM levels is important.
- ISO 16890 offers harmonisation which is welcomed by all stakeholders
- Understanding filter nomenclature & efficient tools is important to size and design the right components including filters for both Indoor and Outdoor Air Quality.
- Energy efficiency and filter efficiency do not contradict each other
- 'ISO 16890 empowers to choose the right filter'

Reference documents

- <u>https://eurovent.eu/?q=content/eurovent-423-2020-selection-en-iso-16890-rated-air-filter-classes-third-edition-english</u>
- <u>https://eurovent.eu/?q=content/eurovent-421-2019-energy-efficiency-evaluation-air-filters-general-ventilation-purposes</u>
- <u>https://eurovent.eu/?q=content/eurovent-419-2018-industry-</u> recommendation-concerning-public-enquiries-air-filters-third
- <u>https://eurovent.eu/?q=content/eurovent-air-filters-guidebook-first-edition</u>

Thank you!

EUROVENT EUROPEAN INDUSTRY ASSOCIATION

Vanshaj Kaul

Country Representative India, Eurovent Certita Certification

Public Policy professional

v.kaul@eurovent-certification.com

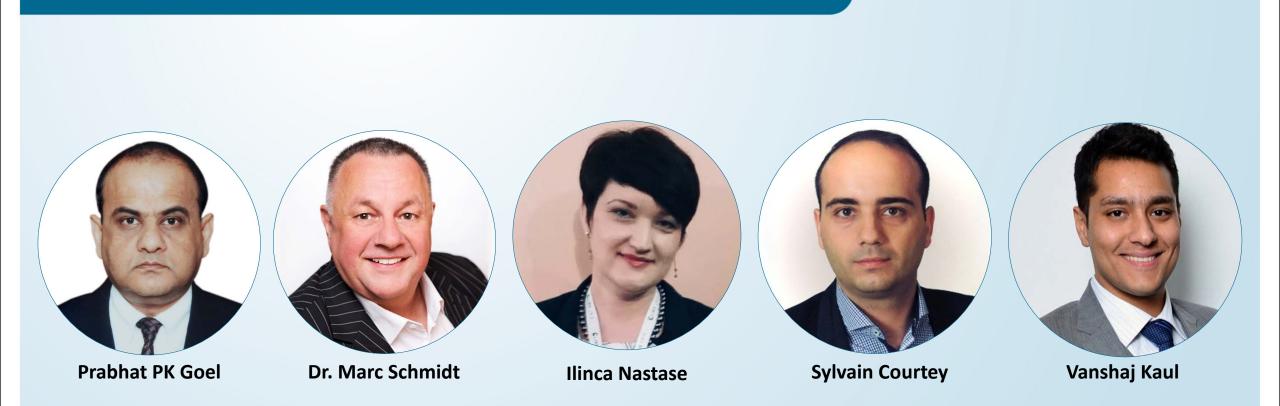
Roadmap

- 1. Welcome remarks and introduction
- 2. ISO 16890: The global air filtration standard

3. Eurovent 4/23: Guidance to the application of ISO 16890

- 4. Energy efficiency and filter certification
- 5. Summary of key takeaways
- 6. Panel discussion and Q&A

JOINT EUROVEN

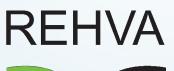

Panel / Q&A

MIDDLE EAST

Moderator: Markus Lattner

Webinar recordings will be available on the Eurovent and Eurovent Middle East YouTube channels

Follow Eurovent, Eurovent Middle East and Eurovent Certita Certification on LinkedIn



Knowledge Partners

Federation of European Heating, Ventilation and Air Conditioning Associations

INSTITUTE OF EXCELLENCE

Delhi Chapter

Media Partner

Climate Control KEY PERSPECTIVES ON THE REGION'S HVACR INDUSTRY

Thank You!

2021-06-09