

Commercial Refrigeration

30 October 2017 – LeMeridien Dubai

Event introduction

Mr Brian Suggitt, Eurovent ME Chairman Managing Director Middle East, Systemair AB

Thank you to our partners

Our media partner

Today's workshop agenda

- 1. International regulatory developments and performance certification in commercial refrigeration and their potential for the Middle
- 2. Influence of cooler units in preventing moisture and aroma loss in open-shelf products in the cold storages
- 3. Natural refrigerant systems in warm climates: existing solutions, case studies and future developments for the Middle East
- 4. Examining the benefits of Air Curtains in Cold Storage applications
- 5. Open Discussion
- 6. Closing and buffet dinner

International regulatory developments and performance certification in commercial refrigeration and their potential for the Middle East

Session 1

Francesco Scuderi

Deputy Secretary General **Eurovent Association Brussels**CEN/TC44/WG6 Convenor
ISO/TC86/SC7/WG2 Convenor

Roadmap

- 1. Commercial refrigeration equipment
- 2. European legislation on refrigerants
- 3. ISO & EN standards: what are they?
- 4. What is an industry recommendation?

- 5. Third party certification: what does it mean?
- 6. ISO/EN Standards on supermarket equipment
- 7. Eurovent Certita
 Certification: Certification
 program for supermaket
 display cabinets
- 8. Q&A

Which equipment do fall in the commercial refrigeration family?

Main function: sales & display

- Remote display cabinets
- Plug-in cabinets
- Ice-cream freezers
- Commercial beverage coolers

Main function: storage

Cold rooms

Which equipment do fall in the commercial refrigeration family? (cont.)

Remote cabinets

Commercial Beverage Coolers

Ice-Cream Freezer

Cold rooms

Roadmap

- 1. Commercial refrigeration equipment
- 2. European legislation on refrigerants
- 3. ISO & EN standards: what are they?
- 4. What is an industry recommendation?

- 5. Third party certification: what does it mean?
- 6. ISO/EN Standards on supermarket equipment
- 7. Eurovent Certita
 Certification: Certification
 program for supermaket
 display cabinets
- 8. Q&A

EU F-Gas Regulation

- European Union legislation to control F-Gases, including hydrofluorocarbons HFCs (F-Gas Regulation)
- Limits the total amount of most important F-gases sold in the EU from 2015 onwards
- Bans the use of F-Gases in many new types of equipment where less harmful alternatives are widely available
- Preventing emissions of F-Gases from existing equipment

Refrigerants tomorrow F-Gas Regulation timeline

Remote applications

- 1 Jan 2020: GWP<2500
 - →R404A phased out
- 1 Jan 2022: GWP<150

→R134A-R410A-R407C phased out

Refrigerants tomorrow F-Gas Regulation timeline (cont.)

Plug-in applications

- 1 Jan 2020: GWP<2500
 - →R404A phased out
- 1 Jan 2022: GWP<150

→R134A-R410A-R407C phased out

Refrigerants tomorrow Results of F-Gas Regulation

- EU F-Gas Regulation pushed issue forward worldwide
- Change in refrigerant usage already visible
- Low-GWP and natural refrigerants at the forefront
- Awareness differs in European Union and Middle East
- HFC phase down is a reality and return to past very unlikely

30 October 2017

Refrigerants tomorrow Commercial refrigeration (estimates)

Refrigerants

- Increasing move towards CO2 (R744) for remote units
 - CO2 Equatorial line is disappearing
- Propane (R290) for integral units

Roadmap

- 1. Commercial refrigeration equipment
- 2. European legislation on refrigerants
- 3. ISO & EN standards: what are they?
- 4. What is an industry recommendation?

- 5. Third party certification: what does it mean?
- 6. ISO/EN Standards on supermarket equipment
- 7. Eurovent Certita
 Certification: Certification
 program for supermaket
 display cabinets
- 8. Q&A

What is a Standard?

- Standard = written document
- Voluntary application (non-mandatory)
- Prepared by all parties involved
- Reflects consensus
- Approved by recognized bodies
- Intended for common and repeated use
- Based on "state of the art" technology
- Accessible to the public

FINAL

INTERNATIONAL STANDARD ISO/FDIS 23953-1

PROJET

NORME

INTERNATIONALE

ISO/TC 86/SC 7

Secretariat/Secrétariat: BSI Voting begins on/Début de vote: 2005-06-23

Note clos le: V

Refrigerated display cabinets -

Part 1: Vocabulary

Meubles frigorifiques de vente -

Partie 1: Vocabulaire

RECIPIENTS OF THIS DOCUMENT ARE TWITTED TO SUBMIT, WITH THEIR COMMENTS, WOTHTCATION OF ANY RELIGIANT PATENT ROUTS OF RHOCK THE ARE AREAD TO PROVIDE SUPPORTING

IN ADDITION TO THEIR STREETS AND ADDITION AND ADDITIONAL POINT AND ADDITIONAL POINT ADDITIONAL PROPERTY AND ADDITIONAL PARTY OF ADDITIONAL PARTY ADDITIONAL PAR

SON WITES A PRESENT AND LIVES SON WITES A PRESENTER AND LIVES SONWHOLD NOTICEARCH DIS DROTS PROPRIETE DON'T LE AUPRINE D'ENTRELLEM COMMISSIONE ET À FOURWIR UNE DOCUMENT FOULIER ACATUS.

CUTING LE FAIT DÉTINE DOMINIS POUR ETRAIL NE SE PAIR SOUR FAMILE À DISS FAIT PAR LE PROPOSITION DE LE CONTROL DE CONTROL

Veuillez consulter les notes administratives en page iv

Reference number Numero de référence (SCIFDIS 23953-1:2005(E/F)

What is a Standard?(cont.) Are the standards mandatory?

- Voluntary: In case of disputes, standards are considered as rules of good practice
- Mandatory if the application is required by a law or a regulation
- Mandatory where there is reference to a specific standard in contractual document

What is a Standard?(cont.) How the standardisation works

International level

European Level

National Level

Roadmap

- 1. Commercial refrigeration equipment
- 2. European legislation on refrigerants
- 3. ISO & EN standards: what are they?
- 4. What is an industry recommendation?

- 5. Third party certification: what does it mean?
- 6. ISO/EN Standards on supermarket equipment
- 7. Eurovent Certita
 Certification: Certification
 program for supermaket
 display cabinets
- 8. Q&A

What is an Industry Recommendation?

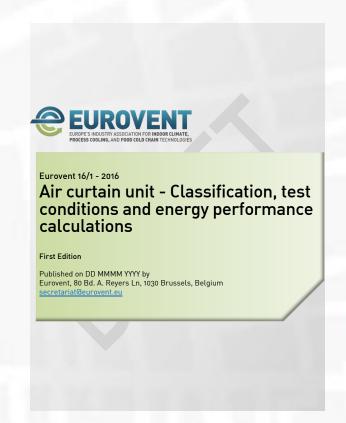
- a set of written regulations issued by an Industry/Experts association
- usually prepared in an joint effort by the major player of the industry
- a standardisation preparatory working document

Eurovent 16/1 - 2016

Air curtain unit - Classification, test conditions and energy performance calculations

First Edition

Published on DD MMMM YYYY by Eurovent, 80 Bd. A. Reyers Ln, 1030 Brussels, Belgium secretariat@eurovent.eu



Eurovent Industry Recommendation on air curtains

Available on Eurovent.eu website:

https://eurovent.eu/?q=conte nt/eurovent-161-2016-aircurtain-unit-classificationtest-conditions-and-energyperformance

Eurovent Industry Recommendation Categories and standard rating conditions

Categories

	Air curtain class.	H door [m]	W door [m]	Warm cell temp [°C]	Cold cell temp [°C]	DT [°C]	DP [Pa]	Wind load [m/s]	Climate classes
1	Commercial/comfort	2.0	1.5	20	2	18	0	2	ACUCC1
j	Industry	3.0	2.0	15	2	10	0	2	ACUI1
1	Cold storage	2.0	1.5	20	5	15	0	0	ACUCS1

Std. door dimensions

Eurovent Industry Recommendation Heat loss and CSE due temperature difference

Heat loss through an open door subjected to temperature difference, Q_T

$$Q_{T without} = \frac{V \cdot \rho \cdot c_p \cdot (\theta_{0w/o} - \theta_{1w/o})}{T} \text{ [kW]}$$

$$Q_{T with} = \frac{V \cdot \rho \cdot c_p \cdot (\theta_{0w} - \theta_{1w})}{T}$$
 [kW]

Climate Separation Efficiency due to temperature difference:

$$CSE_T = 1 - \frac{Q_{T with} + P_e}{Q_{T without}}$$
 [%]

Where:

Where:

P_e = Motor input power [kW]

Roadmap

- 1. Commercial refrigeration equipment
- 2. European legislation on refrigerants
- 3. ISO & EN standards: what are they?
- 4. What is an industry recommendation?

- 5. Third party certification: what does it mean?
- 6. ISO/EN Standards on supermarket equipment
- 7. Eurovent Certita
 Certification: Certification
 program for supermaket
 display cabinets
- 8. Q&A

Third party certification: what does it mean?

General Purpose:

- The value of 3rd party certification is to build up <u>customer</u> confidence by levelling the competitive playing field for all manufacturers and by increasing the integrity and accuracy of the industrial performance ratings
- Encourage honest competition
- Ensure level playing field
- Provide the garantee that equipment not only complies with the standards but also performs as claimed

Third party certification: what does it

mean? (Cont.)

More reliability and independence

Accredited Certifier

Certification 3rd party

Manufacturers self declaration

Less reliability and independence

Third party certification: (Cont.)

Fair comparision using a 'Standard' benchmark

Increase consumer confidence

Eliminates over-sizing due to under performing uncertainty

Ensures performance before purchase!

Eliminates expensive customer verification tests

Avoids excessive system operating costs

Roadmap

- 1. Commercial refrigeration equipment
- 2. European legislation on refrigerants
- 3. ISO & EN standards: what are they?
- 4. What is an industry recommendation?

- 5. Third party certification: what does it mean?
- 6. ISO/EN Standards on supermarket equipment
- 7. Eurovent Certita
 Certification: Certification
 program for supermaket
 display cabinets
- 8. Q&A

EN/ISO Standards on supermarket equipment Refrigerated display cabinets – Cold

rooms

EN/ISO 23953-1:2015

Refrigerated Display Cabinets - Part 1: Vocabulary

EN/ISO 23953-2:2015

Refrigerated Display Cabinets - Part 2: Classification, requirements and test conditions

• EN 16855-1:2017

Walk-In cold rooms - Definition, thermal insulation, performance and test methods - Part 1: Prefabricated cold room kits

EN/ISO Standards on supermarket equipment (cont.)

Commercial Beverage Coolers - Ice Cream Freezers

• EN 16902:2016

Commercial beverage coolers: Classification, requirements and test conditions

• EN 16901:2016

Ice-cream freezers: Classification, requirements and test conditions

Supermarket display cabinet EN ISO 23953

- Definition of the product family temperature (meat, frozen food, deep frozen food, milk, fruits etc.)
- How to test the <u>temperature</u> <u>performances</u> of a display cabinet
- How to test the <u>energy</u> <u>consumption</u> of a display cabinet
- How to ensure the <u>food safety</u>

Supermarket display cabinet EN ISO 23953 (cont.)

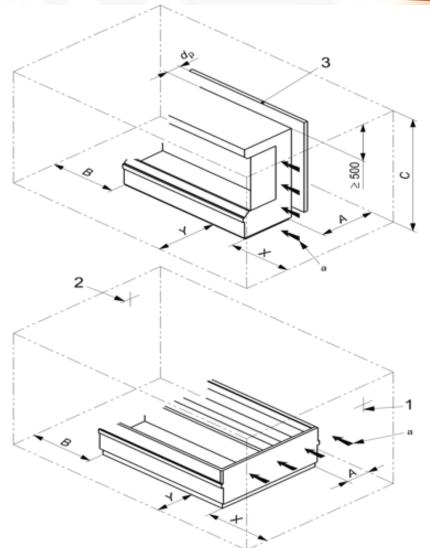
Different Classes= different performances and different energy consumption

Class	Highest temperature, $ heta_{ah}$, of warmest M-package colder than or equal to ab	Lowest temperature, $\theta_{\rm b}$, of coldest M-package warmer than or equal to $^{\rm b}$	Highest minimum temperature, $\theta_{\rm al}$, of all M-package colder than or equal to					
	°С							
L1	-15	_	-18					
L2	-12	_	-18					
L3	-12	_	-15					
M0	+4	-1	_					
M*	6	-1						
M1	+5	-1	_					
M2	+7	-1	_					
H1	+10	+1	/					
Н2	+10	-1	_					
S	Special classification							

L= Frozen foodstuff

M= Chilled foodstuff

H= fruit

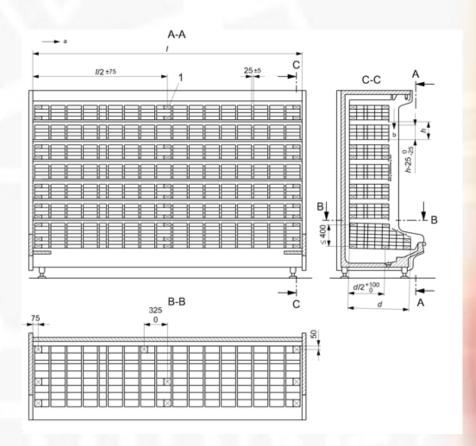


Supermarket display cabinet EN ISO 23953 (cont.)

Temperature test in the climate chamber

Air flow parallel to the cabinet longitudinal axis

These are the most severe test conditions (these are addressed only by this standard)


Supermarket display cabinet

EN ISO 23953 (cont.)

Temperature test in the climate chamber (cont.)

Temperature class and energy consumption assessment

These are the most severe test conditions (these are addressed only by this standard)

Supermarket display cabinet

EN ISO 23953 (cont.)

 It must be noted that the same cabinet could have different energy consumption according to its product temperature

How can we be sure that what is claimed is correct?

M1= xx,xx kWh/day

M2= yy,yy kWh/day

Roadmap

- 1. Commercial refrigeration equipment
- 2. European legislation on refrigerants
- 3. ISO & EN standards: what are they?
- 4. What is an industry recommendation?

- 5. Third party certification: what does it mean?
- 6. ISO/EN Standards on supermarket equipment
- 7. Eurovent Certita
 Certification: Certification
 program for supermaket
 display cabinets
- 8. Q&A

Eurovent Certita Certification is a major European certification body providing voluntary 3rd party certification in the field of Heating, Ventilation, Air Conditioning and Refrigeration (HVAC-R)

Eurovent Certita Certification certifies the performance ratings of products, according to European and International standards, on the full range of HVAC-R products

Eurovent Certita Certification as a certification body accredited by Cofrac – Accreditation 5-5017 –

Eurovent Certita Certification fulfills the requirements of the standards EN ISO/CEI 17065:2012.

- 4) PERFORMANCE
 DECLARATION BY THE
 MANUFACTURER
- ✓ Self assessment of the products' compliance to the ISO & EN Standards
- Consumer trust relies on the manufacturers' reputation

- 3) CERTIFICATION 3RD PARTY
- Complies to test & Certification protocols approved by an independent body
- Consumers and authorities are part of validation

- 2) ACCREDITED CERTIFICATION BODY
- Certification protocols are verified
 & accredited
- ✓ Certificate No 5-0517 scope available on www.cofrac.fr
- Consumer trust relies on independence

- 1) CERTIFICATION 3rd PARTY
- ✓ Over 600 manufacturers worldwide
- √ 38 Certification programmes
- √ 66% of HVAC-R products sold in Europe are ECP certified

The Eurovent
Certified Performance
energy efficiency label
to make the right
choice

Energy efficiency classes:

- ☐ From A+ (= highest energy efficiency)
- ☐ To E (= lowest energy efficiency)

ECC RDC program

Testing of 2 cabinets per year in accordance with EN/ISO 23953:2015
Standard

ECC RDC program

A continuous verification process

Comparison between the measured values and the declared values

Production sites audits

Product performance testing in an independent laboratory

Corrective actions progress assessment (if any)

clu

www.eurovent-certification.co

month. If you have tried by all means to find a Please note that we don't issue yet specific certificates dedicated to one particular product: if you see the product on our website, it means that the performance of the product are certified. In case you don't, please contact the Participant directly,

890

890

890

310

310

2345

900

900

RVC2

RVC2

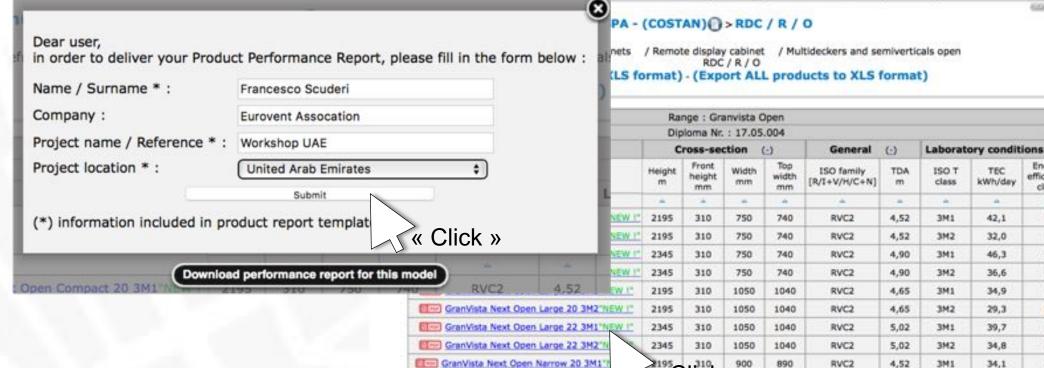
RVC2

4,52

4,90

4,90

3M2

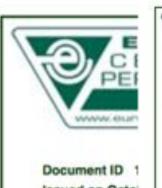

3M1

3M2

29,4

38,0

32,8


www.eurovent-certification.com

GranVista Next Open Narrow 22 3M1"NEW I"

GranVista Next Open Narrow 22 3M2"NEW I"

GranVista Next Open Narrow 20 3M2*

DimE

DimG

DimH

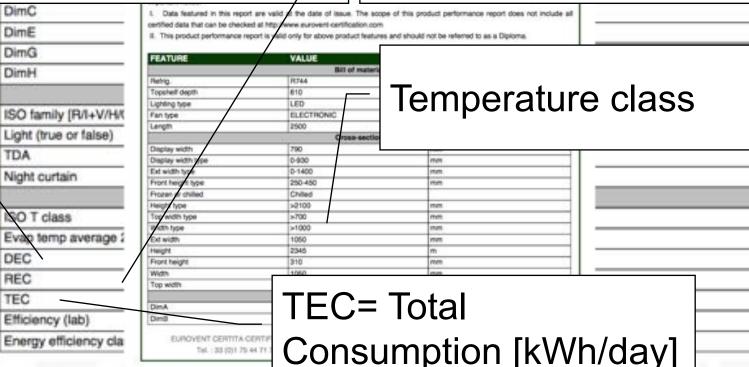
TDA

DEC

REC

TEC

PRODUCT PERFORMANCE REPORT



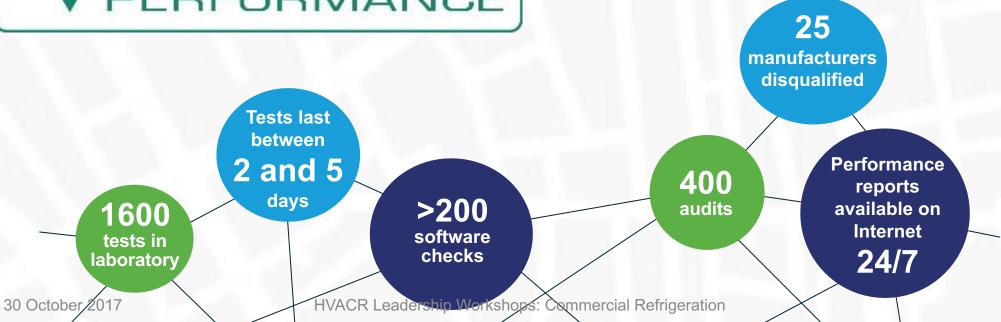
Document ID 1508252297 issued on October 17th, 2017 PROJECT IDENTIFICATION This product performance report is delivered for: Francesco Scuderi

Company **Eurovent Assocation** Workshop UAE Project reference Project location United Arab Emirates

DEC= Fans+Lighting consumption [kWh/dax/] **REC= Refrigeration** consumption [kWh/day]

ECC RDC program

- Temperature class (performances)
- REC→easy to dimension the total cooling demand
- DEC→Easy to dimension the electrical capacity
- REC and DEC according to the temperature class



ECC RDC program

Some brands never mislead!

Thank You!

Q&A

Today's workshop agenda

- 1. International regulatory developments and performance certification in commercial refrigeration and their potential for the Middle
- 2. Influence of cooler units in preventing moisture and aroma loss in open-shelf products in the cold storages
- 3. Natural refrigerant systems in warm climates: existing solutions, case studies and future developments for the Middle East
- 4. Examining the benefits of Air Curtains in Cold Storage applications
- 5. Open Discussion

30 October 2017

6. Closing and buffet dinner

Influence of cooler units in preventing moisture and aroma loss in open-shelf products in the cold storages

Session 2

Serdar Tumen

Business Development Manager Friterm A.S., Turkey

30 October 2017

Cold storage & protection methodology

I. COLD PROTECTION

PRODUCT

PRE COOLING

COLD PROTECTION

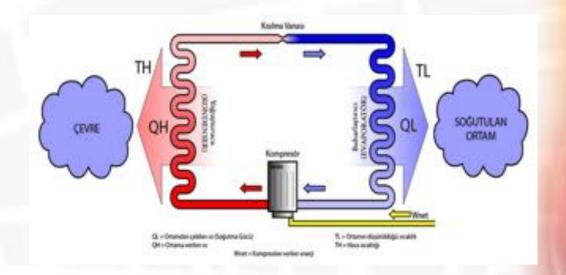
II. FROZEN PROTECTION

PRODUCT

PRE COOLING

SHOCKING OR FREEZING TUNNEL

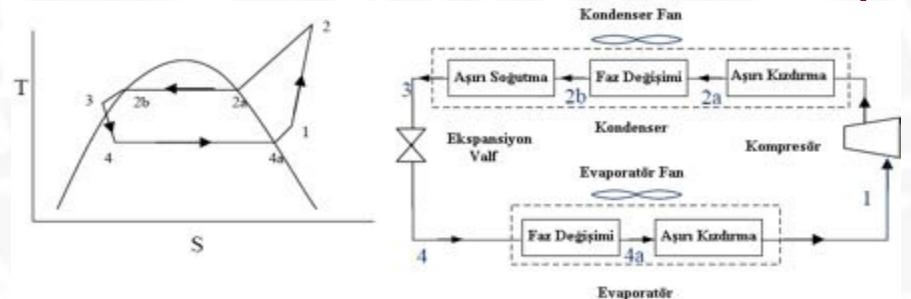
FROZEN PROTECTION



How does a condenser work?

In the refrigeration system, the refrigerant gets heat from the evaporator and gets heat from the compressor which occur during the compressor suction work additionally. Right this point, Condensers involves in to the system, evacuates the heat from the system and condensing the refrigerant.

On this way, System's pressure drops as well as refrigerant changes its character as fluid again to get heat from evaporator to continue its circle.


Condenser Capacity = Compressor Cooling Capacity + Compressor Power

How does a condenser work?(Cont.)

3 steps of heat exchanges in the Condenser:

- 1. Condensing the Refrigerant
- 2. Decreasing the Pre heating
- 3. Subcooling

The main work of Condenser Area:

% 85 Condensing the refrigerant which is the main duty of condenser.

% 5 app. Decreasing the pre heating

% 10 serves to subcooling

Family of condensers available in the market

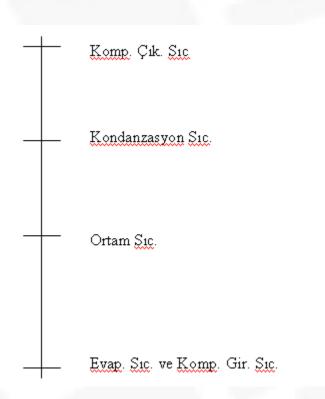
1. Water cooled (shell&tube)

2. Air-cooled

3. Adiabatic

Outdoor temperature: influence on the condensing capacity

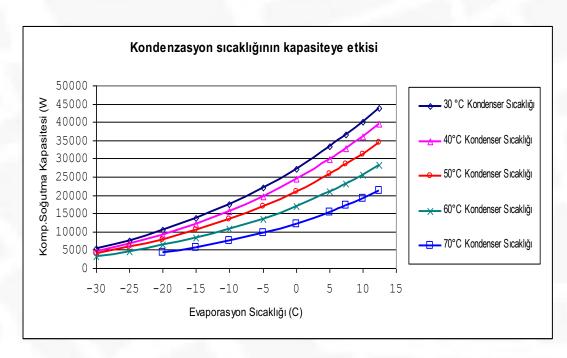
											_
Şehir adı <i>City</i>	Kış sıcak lığı Winter Temp. (°C)	Yaz kuru term sıcaklığı Summer Dry Bulb Temp. ("C)	Yaz yaş term sıcaklığı Summer Wet Bulb Temp. (°C)	Şehir adı City	Kus sucakilnği Winter Temp. (°C)	Yaz kuru term. sicakliği Summer Dry Bulb Temp. (°C)	Yaz yaş term sıcaklığı Summer Wet Bulb Temp. ("C)	Şehir ad ı <i>City</i>	Kuş sıcaklığı Winter Temp. (°C)	Yaz kuru term. sıcaklığı Summer Dry Bulb Temp. (°C)	Yaz yaş term. sıcaklığı Summer Wet Bulb Temp. (°C)
Adana	0	38	26	Erzincan	-18	36	22	K,Maraş	3	36	22
Adıyaman	-9	38	22	Erzurum	-21	31	23	Mardin	-6	38	23
Afyon	-12	34	21	Eskişehir	-12	34	24	Muğla	-3	37	22
Ağrı	-24	34	25	Gaziantep	-9	39	23	Muş	-18	32	20
Amasya	-12	31	21	Giresun	-3	29	25	Nevşehir	-15	28	17
Ankara	-12	35	21	Gümüşhane	-12	33	23	Niğde	- 15	34	20
Antalya	+3	39	28	Hakkarı	-24	34	20	Ordu	-3	30	22
Artvin	-3	30	26	Hatay	0	37	28	Rize	-3	30	26
Avdin	-3	39	26	İskenderun	+3	37	29	Sakarya	-3	35	25
Balıkesir	-3	38	27	Isparta	-9	34	21	Samsun	-3	32	25
Bilecik	-9	34	23	İçel	+3	35	29	Siirt	-9	40	23
Bingöl	-18	33	21	İstanbul	-3	33	24	Sinop	-3	30	25
Bitlis	-15	34	22	İzmir	0	37	25	Siirt	-9	40	23
Bolu	-15	34	24	Kars	- 27	30	20	Sinop	-3 -18	30	25
Burdur	-9	36	21	Kastamonu	-12	34	22	Sivas Takinda*	-18	33	20 25
Bursa	-6	37	25	Kavseri	-15	36	23	Tekirdağ Tokat	-15	29	20
Çanakkale	-3	34	25	Kırklareli	-9	35	25	Trabzon	-15	31	25
Cankiri	-15	34	25	Kırşehir	-12	35	21	Tunceli	-18	37	22
Corum	-15	29	19	Kocaeli	-3	36	25	Sanljurfa	-6	43	24
Denizli	-6	38	24	Konva	-12	34	22	Usak	-9	35	22
Divarbakır	-9	42	23	Kütahva	-12	33	21	Van	-15	33	21
Edirne	- 9	36	25	Malatya	-12	38	21	Yozgat	-15	32	20
Elazığ	-12	38	21	Manisa	-3	40	26	Zonguldak	-3	32	25


Condenser air inlet temperature can be considered as the region summer time dry thermometer temperature for the outside use of the buildings

In order to define the condenser capacity, we need to know the temperature of the place and the heat exchange of the place to other places.

Temperature difference effect

The most important factor to choose the right condenser is, the difference between Condensing temperature and Condenser inlet air temprature.


Condensing temperature is the 1:1 load for the compressor and therefore this load may turn into extra condenser capacity for us; We have to consider low condensing temperature in the designs..

In the applications; Condensing temperature should be considered over 5-15 °C than air inlet temperature. Condensing temperature should be decided regarding to ambient temperature where to system work

Coolong capcity and condensing temperature

Cooling Capacity changes under different condensing temperature

Considering the Condensation temperature between 60-30 °C due to ambient temperature, thermo physical characteristic of refrigerant (there is no condensation on certain temperature depends on refrigerants) and selected compressors's characters are the criterias.

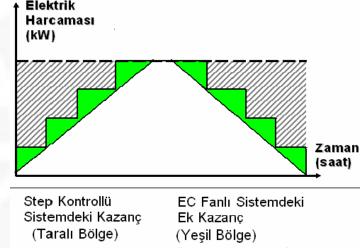
 ΔT should be lower if the ambient temperature high.

For Instance; If the project here in Dubai, ∆T should be chosen between 5-7.

Fans and energy productivity

In Cold Storage

warehousing, Double


speed fans could decrease

provide energy productivity.

the loss of products and

- Standard AC Fans
- Double Speed AC Fans
- Step / Fan Speed Control Unit
- > EC Fans
- Special Low Noise Fans (Owl Wings Fans)

Elektrik Harcaması (kW)

Air cooled condensers: Energy efficiecny class

*ENERJİ VERİMLİLİĞİ SINIFI								
Class	Energy Consumption	Energy Rate (R)*						
Α	Extremely low	R >=110						
В	Very low	70 =< R < 110						
С	Low	45 =< R < 70						
D	Medium	30 =< R < 45						
Е	High	R < 30						

R= Energy rate

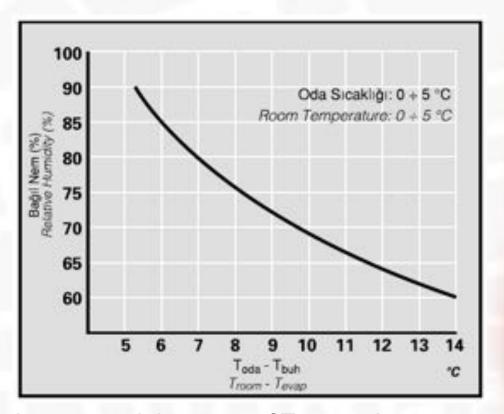
R= Product standard capacity/Fans electrical consumptionsdivided fan motors total energy consumption

Energy Efficiency calculated according to the Eurovent Certita Certification Rating standard manual

Condensers: Fin selectios

MATERIAL	Where to use
Normal Al Fin (Al 1100/8006/8011)	Normal Conditions (Not High Corrosive places)
Epoxy Coated Fin	Ideal for General UseSea Side and VesselsWater Defrost Systems
Whole Epoxy Coated Coils	Hygenic storages Corrosive places
Hydrophilic Coated Fin	Hygenic ConditionsNo Ice demanded placesDisplay Cabinets
Cupper Fin	Sea Side and vesselsLong material lifeHigh Corrosive condioned places

Condensers: Casing material selection


Casing Material	Where to Use				
Magnezed metal sheet (Electro Static Painting coated - ESPC)	General Appl. (Epoxy based coating on Processed galvanized metal for food and variety storaged product)				
Stainless Steel	General Appl., Eshtetic places,				
	Dairy products				
	Hygen needed places				
Magnezium Alloy Al	Genel Appl., Eshtetic Places				
(AIMg) (ESPC)	Light weight needed places				
	Dairy Products				

System efficiency and energy saving

- Humid and Aroma loss can be prevented by decreasing the temperature differences between room and refrigerant's temperature for the long cold storage products.
- As this will make the compressor works on the higher evaporation temperature, C.O.P will increase and extra energy savings provided.

The change graph because of Evaporation temperature and Room temperature with relative humidity difference.

How to design a Cooling system

BAZI GIDA MADDELERİNİN ISIL KARAKTERİSTİKLERİ VE DEPOLAMA KOŞULLARI THERMAL CHARACTERISTICS AND STORAGE CONDITIONS OF VARIOUS FOODS

Malin Cinsi		a Şartları Conditions	Yaklaşık Depolama Ömrü	Su Oranı Water	Donma Başlangıcı Sicak l ığı	Donma Öncesi Özgül İsisi Specific Heat	Donma Sonrası Özgül İsisi Specific Heat	Donms Isss Latent Heat kJ/kg
Type of the Good	Sicaklik Temperature °C	Nem Orani Rel. Humidity %	Approximate Storage Life	Ratio %	Highest Freezing Point °C	Above Freezing kJ/(kg·K)	Below Freezing kJ/{kg·K}	
Enginar / Artichokes	0	95-100	2 H (W)	84	-1,2	3,65	1,89	280
Yerelması Jerusalem artichokes	0	90-95	4-5 A (M)	80	2.2	3.47	1.84	267
Kuşkonmaz / Asparagus	0 ÷ 2	95-100	2-3 H (W)	93	0.6	3.95	2	310
Yeşil fasulye Beans, snap	4 ÷ 7	90-95	7-10 G (D)	89	-0.7	3.82	1.95	297
Pancar (yaprağı) Beets, topped	0	95	10-14 G (D)		-0.4			
Brüksellahanası Brussels sprouts	0	95-100	3-4 H (W)	85	-0.8	3,68	1,90	284
Lahana / Cabbage	0	98-100	5-6 A (M)	92	0.9	3,92	1.99	307
Havuç / Carrots, topped	0	98-100	4-6 H (W)	88	-1.4	3.78	1.94	294
Karnabahar / Cauliflower	0	95-98	3-4 H (W)	92	-0.8	3,92	1,99	307
Kereviz / Celery	0	98-100	2-3 A (M)	94	-0.5	3.98	2.02	314
Misir / Corn, sweet	0	95-98	4-8 G (D)	74	0.6	3.31	1.76	247
Salatalık / Cucumbers	7 + 13	95	10-14 G (D)	96	-0.5	4.05	2,04	320
Donmuş sebzeler Frozen vegetables	•23, •18		6-12 A (M)	61				
Sarımsak (kuru) Garlic, dry	0	65-70	6-7 A (M)	61	-0.8	2.88	1.60	203
Sarımsak (yeşil) Garlic, leafy	0	95-100	10-14 G (D)	93	-0.3	3.95	2.0	310
Pirasa / Leek	0	95-100	2-3 A (M)	85	0.7	3,68	1,90	284
Mantar / Mushrooms	0	95	3-4 G (D)	91	0.9	3.88	1.98	304
Soğan (yeşil) Onlons, green	0	95-100	3-4 H (W)	89	-0.9	3.82	1.95	297
Bezelye (yeşil) Peas, green	0	95-98	1•2 H (W)	74	-0.6	3.32	1.77	247
Biber (tatli) Peppers, sweet	7 ÷ 13	90-95	2-3 H (W)	92	-0.7	3,92	1,99	307
Patates / Potatoes	3 ÷ 4	90-95	4-5 A (M)	81	-0.6	3,55	1.85	270
Turp / Radishes	0	95-100	3-4 H (W)	95	0.7	4.02	2.03	317
spanak / Spinach	0	95-98	10-14 G (D)	93		3.95	2.0	310
Balkabağı / Pumpkins	10 + 13	70-75	2-3 A (M)	91	-0.8	3.89	1.98	304
Kabak / Summer squash	0 ÷ 10	85-90	5-14 G (D)	94	-0.5	3.99	2.02	314
Domates (yeşil) Tomatoes, mature green	13 ÷ 21	90-95	1-3 H (W)	93	-0.6	3.95	2.0	310
Domates (kirmizi) Tomatoes, firm ripe	7÷10	85-90	4-7 G (D)	94	-0.5	3,98	2,02	313
Şalgam / Turnips	0	95	4-5 A (M)	92	-1.1	3.92	1.99	307
Suteresi / Watercress	0	95-100	3-4 H (W)	93	-0.3	3.95	2.0	310
Marul / Lettuce	0 ÷1	95-100	2.3 H (W)	95	-0.2	4.02	2.03	317

 $G = G\ddot{u}n$, H = Hafta, A = AyD = Day, W = Week, M = Month NOT / NOTE: 1 kcal/kg = 4,18 kJ/kg Ref: Ashrae Refrigeration 1998

Malin Cinsi		a Şart l arı Condilions	Yaklaşık Depolama Ömrü Approximate Storage Life	Su Orani Water Ratio %	Donma Başlangıcı Sıcaklığı Highest Freezing Point *C	Donma Öncesi Özgül İstsi Specific Hest Above Freezing kJ/(kg-K)	Donma Sonrası Özgül İslisi Specific Heat Below Freezing kJ/(kg-K)	Donma Isase Latent Heat kJ/kg
Type of the Good	Sloaklik Temperature *C	Nem Orani Rel. Humidity %						
Elma / Apple	0 ÷ 3	90-95	8-9 A (M)	84	-1.1	3.65	1.89	280
Kayısı / Apricot	0 ÷ 1	90-95	1-3 H (W)	85	-1.1	3,68	1.90	284
Avokado / Avocado	3 ÷ 4	85-90	2-8 A (M)	65	-0.3	3,01	1.67	253
Muz / Bananas	13 ÷ 14	85-95	-	75	-0.8	3,39	1.78	250
Böğürtlen / Blackberry	0.5 ÷ 0	90-95	3 G (D)	85	-0.8	3,68	1.90	284
Ufak kavun / Cantaloupes	2 ÷ 4	95	5-15 G (D)	92	-1.2	3,92	1.99	307
Vişne / Sour cherry	0	90-95	3-7 G (D)	84	-1.7	3.68	1.89	280
Kiraz / Cherry	1 ÷ 0.5	90-95	2-3 H (W)	80	-1.8	3,51	1.84	267
Hindistan cevizi / Coconut	0 ÷ 1	90-95	3-5 A (M)	82	-0.8	3.58	1.87	274
Kuş üzümü / Currant	-5 ÷ 0	90-95	1-4 H (W)	85	-1	3,68	1.90	284
Hurma / Dates, cured	-18 ÷ 0	75	6-12 A (M)	20	-16	1,59	1.09	67
İncir (taze) / Fig. fresh	-1 + 0	85-90	7-10 G (D)	78	-2.4	3.45	1.81	260
Donmus meyveler / Frazen truits	-24 ÷ -18	90-95	18-24 A (M)					
Kivi / Kiwi	0	90-95	3-5 A (M)	82	-1.7	3,58	1,87	273
Limon / Lemon	11 ÷ 12	85-90	1-4 A (M)	89	-1.4	3.82	1.95	297
Maltaeriği / Loquat	0	90	3 H (W)	87		3.75	1.93	290
Yeşil zeytin / Olives, fresh	7 ÷ 10	85-90	4-6 H (W)	75	-1.4	3.35	1.78	250
Portaka / Orange	3 ÷ 9	85-90	3-6 H (W)	86	-1.3	3,72	1,92	287
Şefta l i / Peaches	-5 ÷ 0	90-95	2-4 H (W)	89	-0.9	3,82	1.95	297
Armut / Pears	1.6 ÷ 0.5	90-95	2-7 A (M)	83	-1.6	3,61	1.88	277
Erik / Plum	-1÷0	90-95	2-4 H (W)	86	-0.8	3.72	1.92	287
Nar / Pomegranate	4	90-95	2-3 A (M)	82	-3	3.58	1.86	274
Ayva / Quinces	-1 ÷ 0	90	2-3 A (M)	85	-2	3.68	1.90	284
Ahududu / Raspberries	-5 ÷ 0	90-95	2-3 G (D)	81	-1.1	3.55	1.85	270
Çilek / Strawberries	-5 ÷ 0	90-95	5-7 G (D)	90	-0.8	3.85	1.97	300
Mandalina / Tangerine	4	90-95	2-4 H (W)	87	-1.1	3.75	1.93	290
Karpuz / Watermelon	4 ÷10	90	2-3 H (W)	93	-0.4	3,95	2.0	310

BALIKLAR - ETLER - KÜMES HAYVANLARI / FISHES - MEAT -POULTRY PRODUCTS

Kalkan / Turbot	-1 ±1	95-100	18 G (D)	75	2.2	3.35	1.78	250
Ringa / Herring	0 ÷ 2	80-90	10 G (D)	61	2.2	2.88	1.60	203
Uskumru / Mackerel	0 ÷ 1	95•100	6-8 G (D)	65	2.2	3.01	1.65	217
Somon / Salmon	-1 ÷ 1	95-100	18 G (D)	64	2.2	2.98	1.64	213
Tuna / Tuna fish	0 ÷ 2	95-100	14 G (D)	70	2.2	3,18	1,71	233
Donmuş balık / Frozen fish	29 ÷ 18	90-95	6-12 A (M)					
Siğir (taze) / Beef, fresh	0 ÷ 1	88-92	1-6 H (W)	62÷77	2.2 ÷ 1.7	2.91 ÷ 3.43	1.62 ÷ 1.80	207÷257
Siğir (donmuş) / Beaf, frozen	23 ÷ •18	90-95	9-12 A (M)					
Kuzu (taze) / Lamb, fresh	0 ÷ 1	85-90	5-12 G (D)	60+70	2.2 + 1.7	2.85 ÷ 3.18	1.59 + 1.72	200÷233
Kuzu (dnm.) / Lamb, froz.	23 ÷ 18	90•95	8-10 A (M)					
Kümes H, (tz,) / Poultry, fresh	0	85-90	1 H (W)	74	-2.8	3,32	1.77	247
Kümes H. (dnm.) / Poutry, froz.	•23 ÷ •18	90-95	8-12 A (M)					

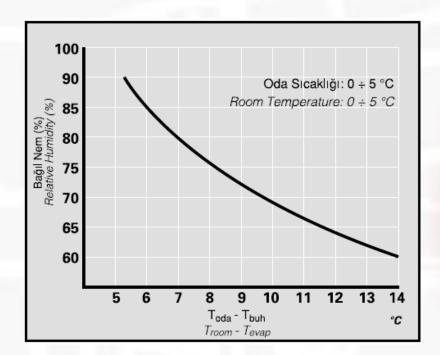
 $G = G\ddot{u}n$, H = Hafta, A = AyD = Day, W = Week, M = Month NOT / NOTE: 1 kcal/kg = 4,18 kJ/kg Ref: Ashrae Refrigeration 1998

How to design a Cooling system (Cont.)

- 1. It must be indicated cold room temperature and relative humidity depending on chosen refrigerant
- 2. Room size must be decided regarding to product capacity and stored product.
- 3. Floor, side and roof temperature will be decided.
- 4. Room wall construction and Isolation material thickness should be decided in terms of outside&Inside environmental conditions.
- 5. Heat recovery should be calculated (Fans' heat also seperately considered while calculating the heat recovery. In some shock systems' applications; this circumstances effects the total capacity around %30 & plus.)

How to design a Cooling system (Cont.)

- 6. Refrigerant must be decided regarding tp capacity and the stored product.
- 7. Evaporator, condenser and compressor capacity should be decided.
- 8. Condenser cooling circut must be decided whether using air or water. (That depends on system closure to source of the water, condenser capacity, and air & water temperature which will condensate the refrigerant in the condenser.)
- 9. Needs to be controled Evaporator's fans' capacity.
- 10. Pipe diameter calculated in the Installation


How to calculate the cooler capacity

Necessary Information to make selection of Coolers:

- Room Temperature and relative humidity level
- Difference of Room temperature evaporation temperature (In terms of stored product)
- Room size / Blowing distance
- Necessary air flow

Specifically for the food cooling, room relative humidity wanted to be on the proper conditions. Room's relative humidity is the function of difference between cold store temperature and evaporation's temperature.

To provide necessary relative humidity for the 0-5 °C cold rooms, ΔT can be decided from the beside graph for the right evaparator selection.

Cooler selection

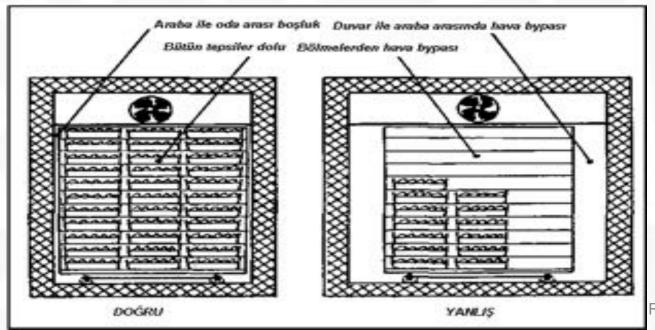
Air Speed: 2,5-3,7 m/sn (Mid Speed) FES TYPE

- WIDE RANGE USE FOR GENERAL COOLING APPLICATIONS
- WIDE CAPACITY & VARIETY OF PITCH CHOICE

Air Speed: 1,5-3,5 m/sn (Mid Speed) FEDD TYPE

- GOOD FOR LOW TOP
- COLD AIR NOT ON PRODUCT
- COOLING FROM TOP TO BOTTOM HOMOGEN COOLING IN THE ROOM

Influence of air speed on cooling


- Freezing time shorter when the air speed increased.
- When the refrigerant speed increases, heat transfer coefficiency and therefore K total heat transfer coefficieny might be increased. However, In this case, either Refrigerant neither cold storage load loss increases, beside evaporation increases specifically on the food which has humidity. On those products, it can be seen crackings because of dried and weight loss. Especially flowers and vegs, sliced meats are more sensitive against the high speed air flow. They quickly perished.

Importance of air circulation

Air speed on the stored product must be the equal in the tunnel in a good design and processed shock freezers. This way, All the stored products would be frozen equally. Tunnel design construction is very important due to providing the equal air flow all around the room surface and defeating the air resistance of products. Spcaes must be equal between trays, all the trolleys bottom, side and top should be reduced with min space. Otherwise, Air always prefers to easy way and not hit the products and freezing will not be fulfilled.

Refrigeration

Packaging effect of the product

Each type of packaging and rolling the product will extend the freezing time. This extension is not only about packaging material isolation, it is also the air between product and package which makes extra isolation.

Packaging Type	Freeze Time - Hour	
Wooden Box, Paper rolled, cover closed	17 – 9	
Wooden box, folio rolled, cover closed	17 – 2	
Wooden box, paper rolled, no cover	16 – 3	
Wooden box, folio rolled, no cover	16 – 2	
Wooden box, no rolled, cover closed	14 – 7	
Wooden box, no rolled, no cover	8 – 0	

Thank You!

Q&A

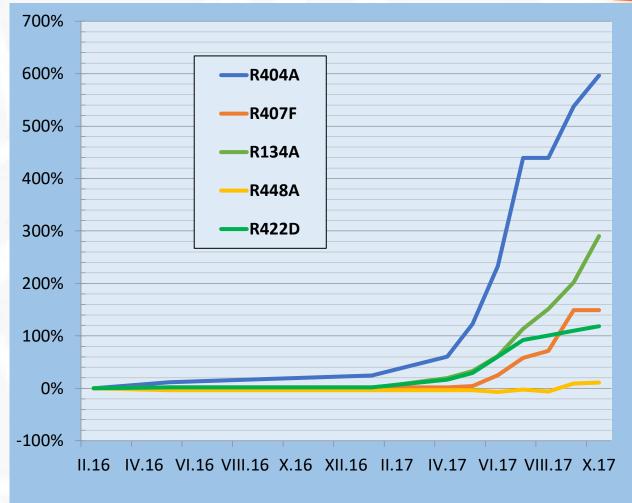
Today's workshop agenda

- 1. International regulatory developments and performance certification in commercial refrigeration and their potential for the Middle
- Influence of cooler units in preventing moisture and aroma loss in open-shelf products in the cold storages
- 3. Natural refrigerant systems in warm climates: existing solutions, case studies and future developments for the Middle East
- 4. Examining the benefits of Air Curtains in Cold Storage applications
- 5. Open Discussion
- 6. Closing and buffet dinner

Natural refrigerant systems in warm climates: existing solutions, case studies and future developments for the Middle East

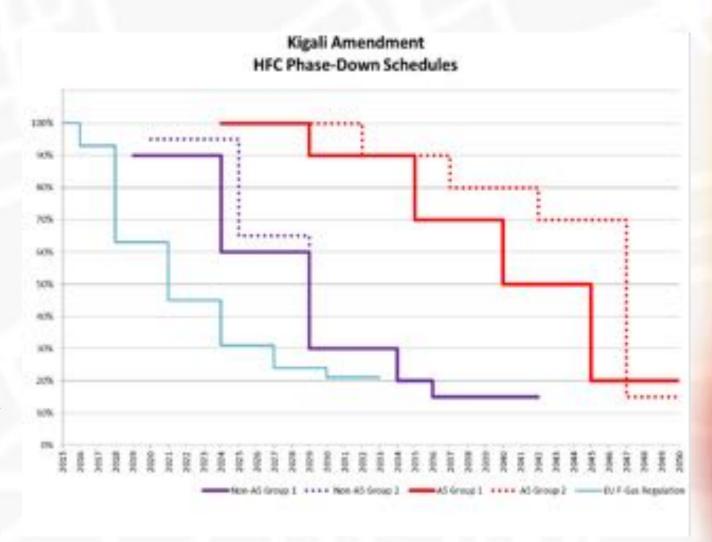
Session 3

Andrea Cavalet


After Sales Director **EPTA Middle East**

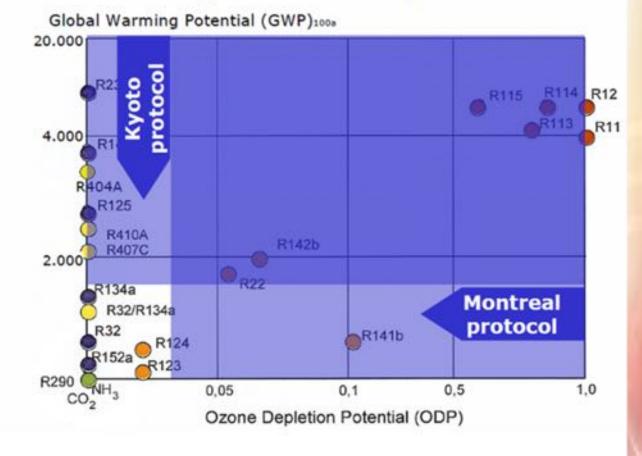
F-GAS EFFECT: HFC REFRIGERANT PRICES in Europe

- •Ban Mechanism (2020) and Quota Mechanism (2017)
- F-Gas HIGH impact on market prices and availability
- Stop production of R404A Jan 2018
- HFC (R407A/C/F, R134a, R410A) are increasing in price
- HFO refrigerants are stable



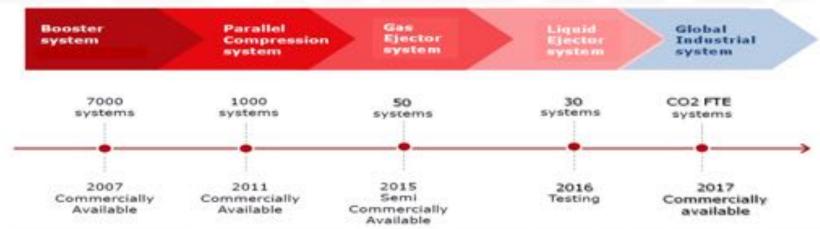
Kigali Amendment – Montreal Protocol

- October 2016
- Step forward to reduce global warming
- •Quota Mechanism: Global phasedown of HFCs on CO2e basis
- Can be strengthened over time
- Energy efficiency gains could significantly increase climate impact
- Non A5 Group (USA and others)
- A5 Group 1 (China and Africa)
- A5 Group 2 (Middle East)



Why CO₂

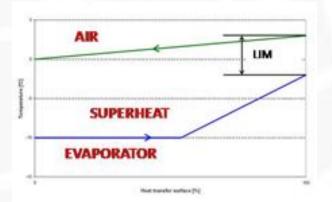
- Environmental friendly
- ODP = 0
- GWP = 1
- Excellent heat transfer capability
- High cooling capacity compared to traditional refrigerants
- Not flammable
- Stable substance: not decompose
- Low and stable price

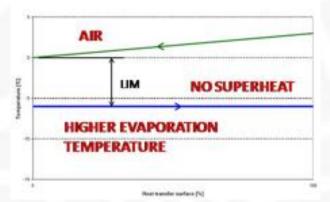

Global Warming & Ozone depletion

Warm climates available solutions

- » Parallel compression system: a dedicated VSD compressor removes the flash gas from the liquid
- » Gas ejector system: device that pumps the vapor exiting from MT evaporators back to the liquid receiver.
- » Liquid ejector system: device that pumps the liquid exiting from MT flooded evaporators from a low pressure receiver back to the intermediate pressure receiver.
- » Above solutions are limited by:
- COMPLEXITY
- HIGH COST OF COMPONENTS NOT COMMERCIALLY AVAILABLE
- NEED TO HAVE HIGHLY QUALIFIED STAFF TO COMMISSION AND OPTIMIZE THE SYSTEM

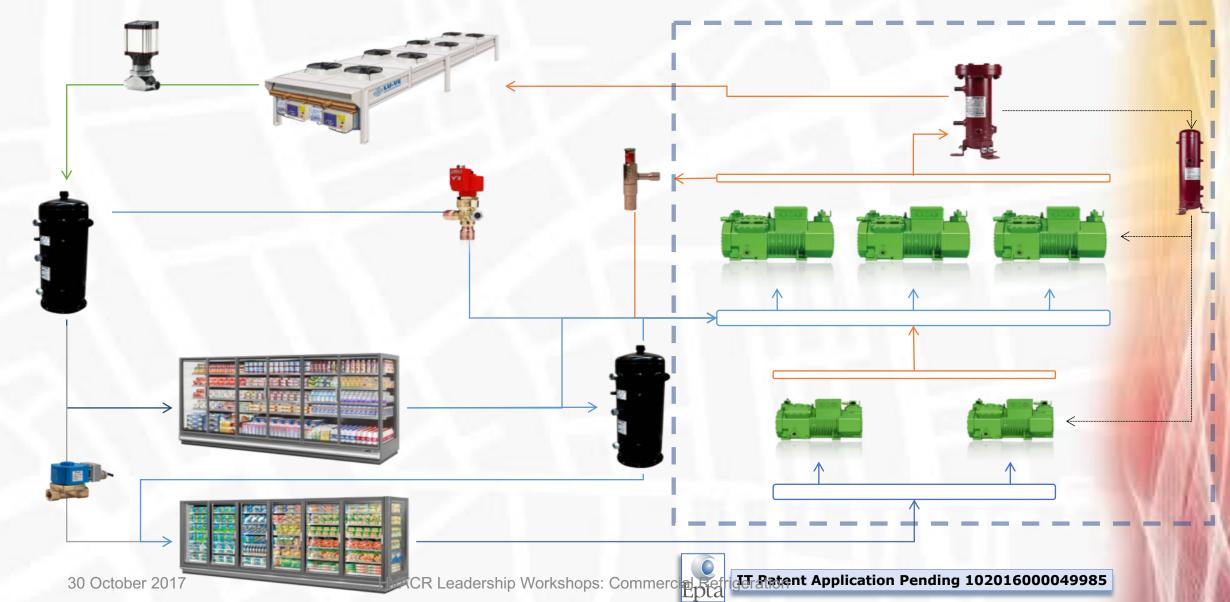
How to find a solution for warm climates that combines


- CO2 transcritical
- Low cost
- Energy saving
- Reliability
- Simplicity?

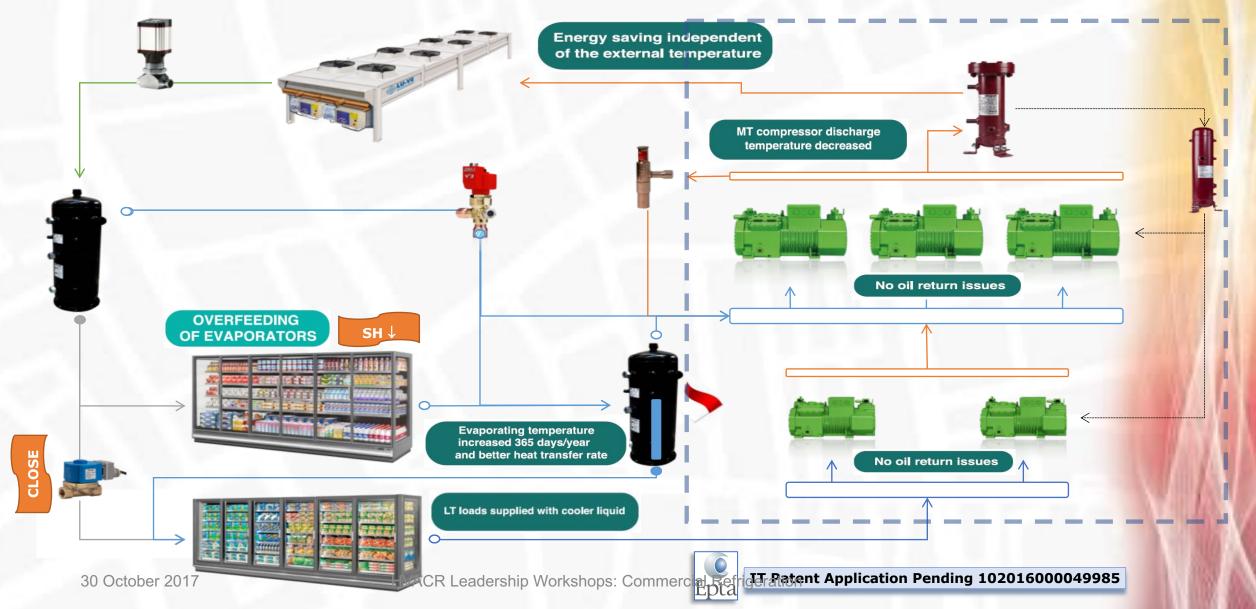

CO2 FTE System

Overfeeding of the evaporators

What is the superheat? The amount of heat added to the refrigerant after its complete evaporation.


The superheat is necessary to have only vapor at the evaporator outlet, but it also introduces a significant energy waste and higher compression work.

- Superheat and Evaporating Temperature The maximum evaporating temperature is limited by the approach between the air inlet temperature and the refrigerant temperature at evaporator outlet.
 - Superheat causes lower evaporation temperature and hence higher energy consumption.
- ZERO superheat : overfeeding of evaporators Superheat is completely eliminated, liquid refrigerant is mostly used at the evaporator, liquid and vapor are present at the MT evaporator outlet
- Advantages of evaporators overfeeding Higher evaporation temperature (up to 6K), liquid refrigerant ensures excellent heat transfer



SETTE Advantages

1. Evaporating temperature increased 365day/year

The efficiency of the CO₂ FTE SYSTEM is given by the MT cabinets operating with flooded (overfeeding) evaporators without superheat

Evaporation temperature is increased up to 6K (2.5-3% energy saving per K)

2. Energy saving is independent of the external temperature

Unlike ejector technology, the FTE system works in energy saving mode with flooded evaporators all year long

3. Optimal performance at EVERY temperature

The absence of superheat decreases the discharge temperature of the compressors considerably, making it the ideal system for every climate.

4. LT loads supplied with cooler liquid

Liquid to the LT freezers is subcooled after MT cabinets

5. No oil return issues

Perfect lubrication is ensured as the oil circuit is uninterrupted

SETTE Key features

SIMPLE

because it does not need ejectors or sophisticated components, it is as simple as a standard basic CO2 booster system

Mechanically the FTE system operates with the same components as the basic CO₂ transcritical system, plus the FTE multilevel liquid receiver.

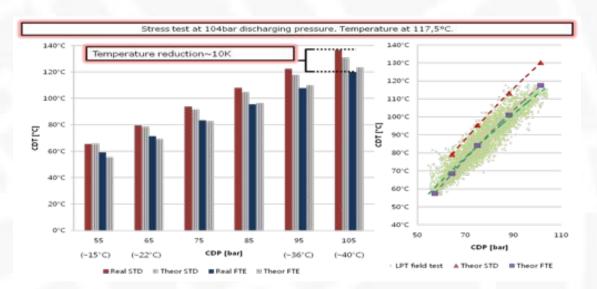
SFTE Key features

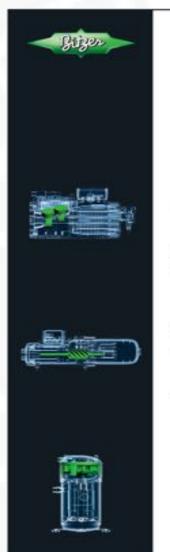
RELIABLE

as it is a modular solution based on standard components produced on a large scale: standard CO₂ cabinets and freezers, standard basic CO₂ booster system, the heart of the system is the FTE module, an intelligent standard multi-level liquid receiver.

EPTA numbers:

- 2000 CO2 system
- 100 CO2 with FTE




SETTE Key features

RELIABLE

a CO₂ booster system solution more safe and robust than ever: FTE system **reduces the compressor discharge temperature** and ensures **perfect oil circulation** providing better lubrication.

MT compressor discharge temperature decreased

Certificate

This is to certify that

Epta

has developed a

highly innovative, energy-efficient CO₂ solution with reliable BITZER compressors, which maintains an uninterrupted cold chain in all climate conditions

The transcritical Epta FTE (Full Transcritical Efficiency) system introduces a simple method to introduce flooded evaporations in commercial applications. This leads to a significant reduction of the difference between evaporation and display cabinet temperatures in the optimised mode and thus lower energy consumption.

Especially in combination with ECOLINE+ reciprocating compressors, BITZER sees the new FTE technology as a major step in the right direction towards the environmentally friendly use of refrigerants in commercial refrigeration, combined with energy efficiency in high ambient temperature regions. The FTE solution is reliable and resistant under all operating conditions, no matter whether it is used in warm or cold areas.

We would like to thank Epta, the expert in commercial refrigeration, for its innovation as well as for being a great collaborative partner and hope to carry on working together to create a successful future.

> Erik Bucher Director Sales Refrigeration

Sindelfingen, 15 February 2017

HVACR Leadership Workshops

FTE is a new business model:

- > INDUSTRIALIZABLE
- > RELIABLE
- > EFFICIENT

The future of natural refrigeration depends on systems that combine cost, energy saving and reliability in a simple design.

With CO2 FTE SYSTEM the cost, performance and reliability gaps can finally be seen to be bridged.

FTE gives a significant contribution to break down the barriers to a natural future in refrigeration.

Complete EPTA Catalogue with Natural Refrigerants

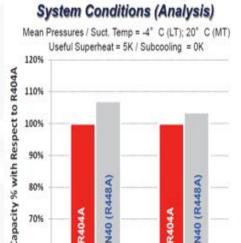
Natural refrigerant systems

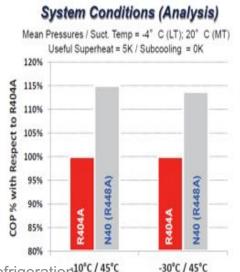
F-GAS POLICIES WORK WELL

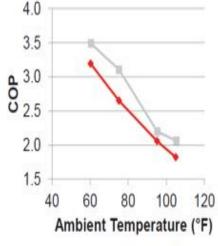
- CO2 emissions reduced
- Energy consumption is key target
- Natural refrigeration products and systems are available on the market
- The F-Gas in Europe and the Kigali amendment applied at national level are essential to effectively fight global warming

System Recovery – HFO blend RETROFIT R404A/R22

- Equipment compliant with ecocompatible technology, improving energy efficiency?
- Retrofit with HFO blend quick, easy, costeffective
- Safe and non-flammable (ASHRAE A1)
- Extensively field tested with no equipment/lubricant changes (in case of R404 retrofit)
- Miscible with POE lubricants




Solstice® N40


Solstice® N40 (R-448A) is the Honeywell equivalent as XP40 (R-449A), a non-flammable, reduced GWP HFO refrigerant for new supermarkets and R-404A/R22 retrofits.

Composition is 1234yf / 1234ze / R32 / R125 / R134a (20% / 7% / 26% / 26% / 21%)

Product	Capacity	Efficiency	GWP AR5
R404A	100%	100%	3943
Solstice® N40 (R448A)	100-105%	110-115%	1273

Today's workshop agenda

- 1. International regulatory developments and performance certification in commercial refrigeration and their potential for the Middle
- 2. Influence of cooler units in preventing moisture and aroma loss in open-shelf products in the cold storages
- 3. Natural refrigerant systems in warm climates: existing solutions, case studies and future developments for the Middle East
- 4. Examining the benefits of Air Curtains in Cold Storage applications
- 5. Open Discussion
- 6. Closing and buffet dinner

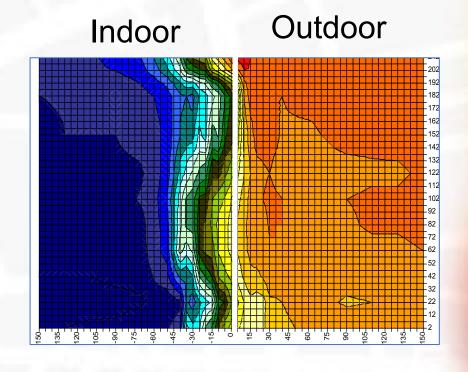
Examining the benefits of Air Curtains in Cold Storage applications

Session 4

Pontus Grimberg

International Sales Director

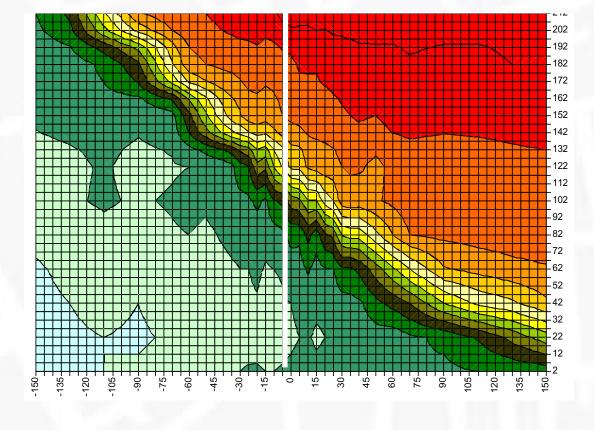
Frico AB, Sweden



Air Curtains in Cold Storage Applications

Side view

Dubai Green Building Regulations 501.04


"For all new air conditioned buildings, other than villas, all regularly used air conditioned entrance lobbies must be protected by a door design which acts as a barrier to the loss of conditioned air"

Open door – huge energy losses

Indoor

Outdoor

Door height

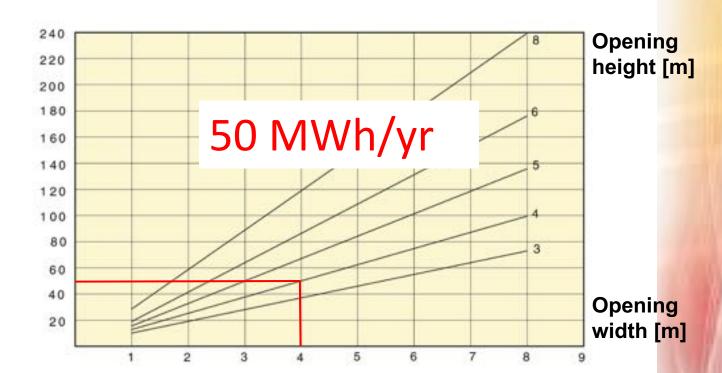
Side view

Source: Malmö Högskola

The Solution

 An air curtain with optimized air stream effectively protecting the entrance from the outdoor climate

The result


- Saving energy
- Providing comfort
- Improving the indoor air quality
- Less problems with insects, fumes etc.

Energy losses through open doors

Losses [MWh/yr]

Industrial building/warehouse

Temperature difference: 15 °C

Year mean wind speed: 4 m/s

Door open: 1h/day

Efficiency of air curtains

Tests are showing that a correct installed air curtain significantly can reduce the energy losses in an open door

Ghent University

Purdue University

 SP Swedish National Testing and Research Institute 85%

London South Bank University 709



Energy losses through open doors

Losses [MWh/yr]

Industrial building/warehouse

Temperature difference: 15 °C

Year mean wind speed: 4 m/s

Door open: 1h/day

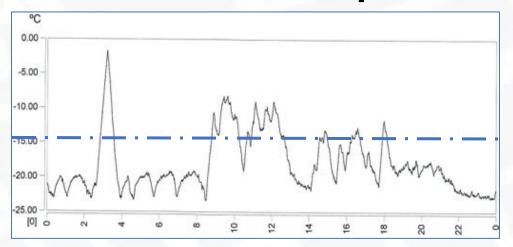
Cold storage - case study

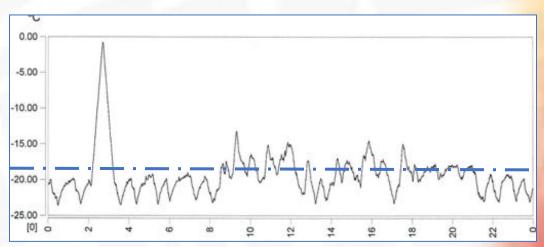
- Cold storage temp: -23°C
- Heated area temp: +26 °C
- Door dimensions: 2,4 x 2,1m
- Door opened 100 times a day

Cold storage - case study

- Huge energy losses
- Temperature rise in the cold sections
- Ice on the refrigeration units
- Ice on the floor

Cold storage - case study


- Lower cold losses
- Reduced build up of ice
- Extended defrosting intervals
- Easier to pass through the door without the plastic strips



Cold storage - case study

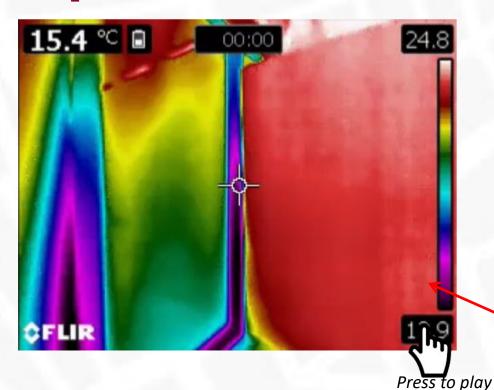
With Plastic Strips

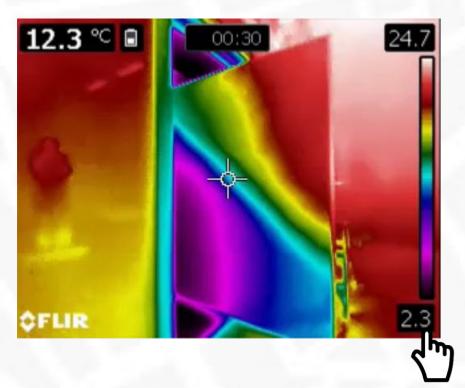
With Air Curtains

Av. cold room temperature: -14°C Av. cold room temperature: -19°C

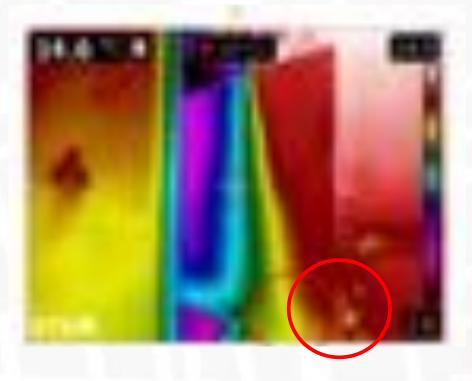
Cold storage - case study

Combination of storage doors and air curtains provides the highest energy savings

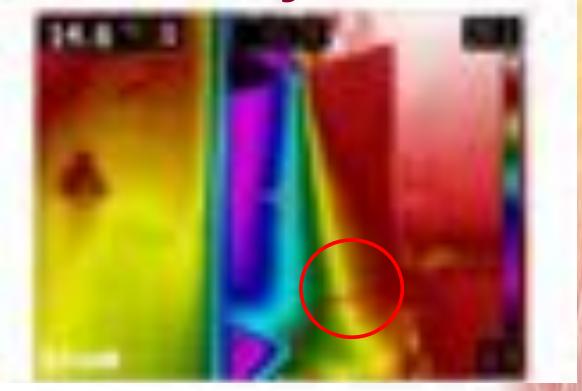




Entrance without air curtain


Shield placed in middle of doorway once door opens up

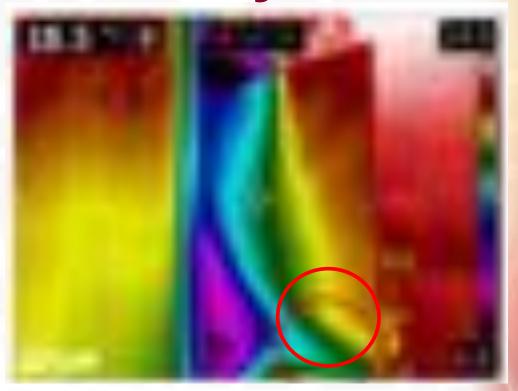
Air curtain with correct air speed


Air curtain with correct air speed

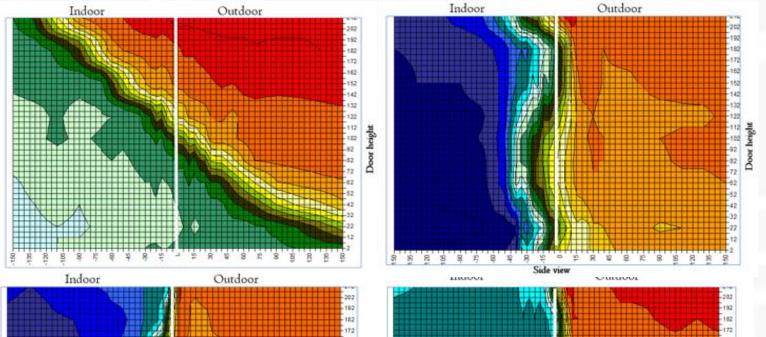
Distinct air-barrier at the floor

Air curtain with too high speed

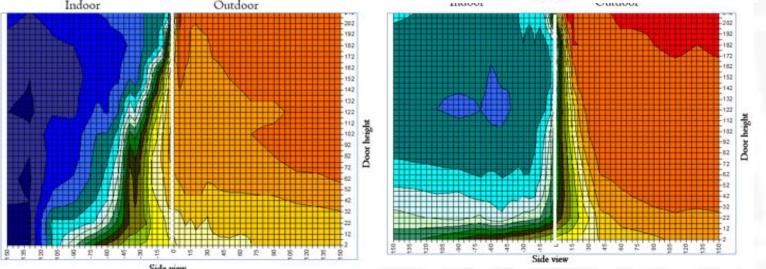
Air curtain with too high speed


Turbulence at floor level, causing losses

Air curtain with too low speed



Air curtain with too low speed
The barrier cannot resist stress load



Without air curtain

Optimal installation

Wrong angle on outlet

Too high speed

Air Velocity - Air Curtain Standards

INTERNATIONAL STANDARD ISO 27327-1

First edition 2009-06-15

Fans - Air curtain units -

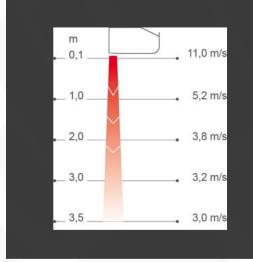
Part 1:

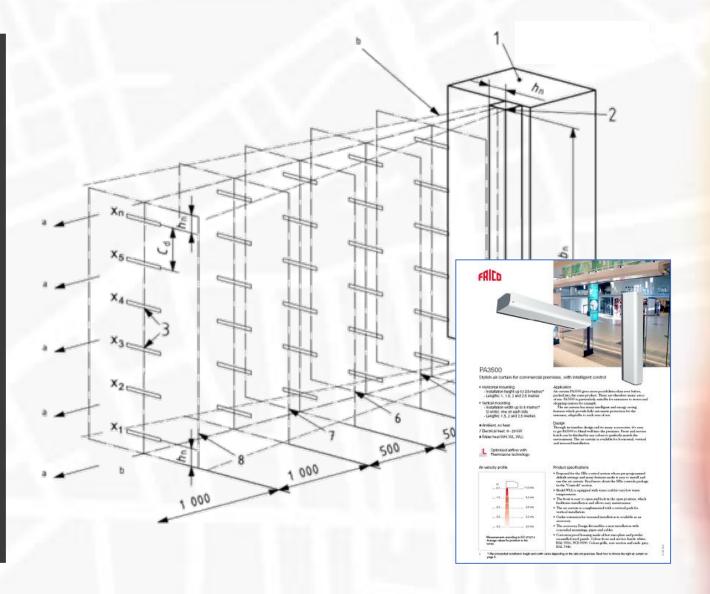
Laboratory methods of testing for aerodynamic performance rating

Ventilateurs - Rideaux d'air -

Partie 1: Méthodes d'essai en laboratoire des caractéristiques de performance aérodynamique **ISO 27327** establishes uniform methods for laboratory testing of air curtain units to determine aerodynamic performance in terms of:

- airflow rate
- outlet air velocity
- Uniformity
- power consumption
- air velocity projection


for rating or guarantee purposes.



Optimized air curtains for cold storages.

Velocity according to the ISO 27327-1 standard.

Air curtain for cold storage - criteria

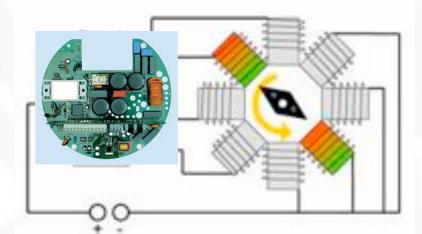
- Easy and accurate control of the speed stepless
- The lowest possible power consumption
- Homogenous air beam

Combining EC-motors with tangential impellers

EC-Motor

EC-motor

= electronically commutated motor


Definition: Commutation in power electronics describes the process through which a current passes and flows from one branch to another.

EC-Motor

 EC-motors with integrated electronics can be controlled steplessly at the required air volume and have a high efficiency.

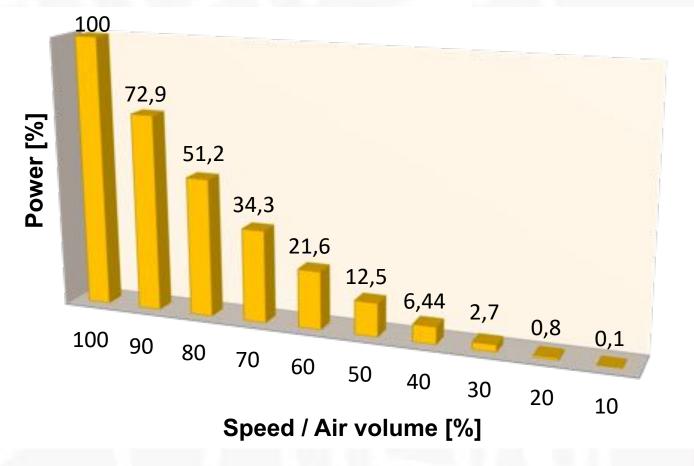
 The power saving is not only at maximum power, but also especially in lower power operation dependant on demand.

Example: Duct fan

Speed [1/min]	Airvol. [m³/h]	Pressure [Pa]	Power [W]	Savings
2289	1000	250	220,00	(100%)
2060	900	203	160,38	-27%
1831	800	160	112,64	-49%
1602	700	123	75,46	-66%
1373	600	90	47,52	-78%
1145	500	63	27,50	-88%
916	400	40	14,08	-94%

Fan laws

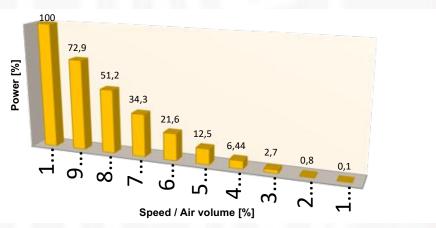
V1/V2 = n1/n2 p1/p2 = (n1/n2)² Pw1/Pw2 = (n1/n2)³



Power - Speed / Air volume

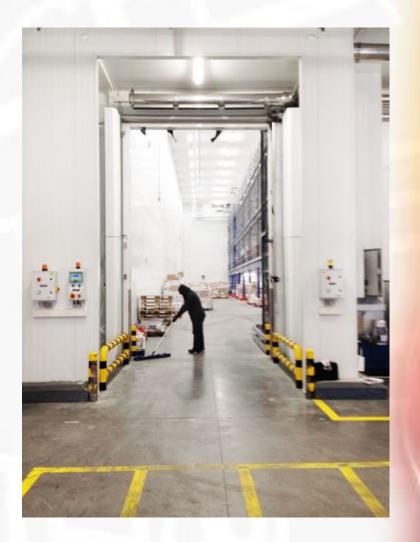
•MIHU OCT 2016

 $Pw1/Pw2 = (n1/n2)^3$



Air curtain for cold storage - criteria

- Easy and accurate control of the speed stepless
- The lowest possible power consumption
- Homogenous air beam



Installation examples

HVACR Leadership Workshops: Commercial Refrigeration

HVACR Leadership Workshops: Commercial Refrigeration

30 October 2017

HVACR Leadership Workshops: Commercial Refrigeration

HVACR Leadership Workshops: Commercial Refrigeration

30 October 2017

HVACR Leadership Workshops: Commercial Refrigeration

Cold Storage Solutions Key Take Aways

- Saving energy
- Reducing maintenance
- Safer and more hygienic environment
- Reducing food waste
- Less need for defrost

Today's workshop agenda

- 1. International regulatory developments and performance certification in commercial refrigeration and their potential for the Middle
- 2. Influence of cooler units in preventing moisture and aroma loss in open-shelf products in the cold storages
- 3. Natural refrigerant systems in warm climates: existing solutions, case studies and future developments for the Middle East
- 4. Examining the benefits of Air Curtains in Cold Storage applications
- 5. Open Discussion
- 6. Closing and buffet dinner

30 October 2017

Open Discussion

The rise of new refrigerants: Assets and drawbacks

Commercial refrigeration in hot climate zones: Best practices

Consultants in commercial refrigeration: Core issues and challenges

Closing remarks

Mr Brian Suggitt, Eurovent ME Chairman Managing Director Middle East, Systemair AB