EUROVENT MIDDLE EAST HVACR Leadership Workshops

Event Introduction: Air Handling Units

Brian Suggitt Chairman Eurovent Middle East

Eurovent Middle East

AAF		Contraction Contract	BELIMO	camfil	CUMAo	
COULEX	PDAIKIN	In Dealer	ÐRI	ebmpapst	EFLOW	Epta
evapao	FAILD	FRITERM	OGENERAL	Hoval	Hoval	kgroup
CLG LG	C Lindab	Midea	mucti-ming-	Ric	SAMSUNG	SPX
🌑 system air	Swegon'	TROX* TECHNIK	WIKA			
BELATED ORGANISATIONS		36	TAQEEF			

Agenda

- 1. Fundamentals of Air Handling Units
- 2. Energy Recovery in Fresh Air Units
- 3. Air Filters: ISO 16890
- 4. EC Fan Technology: new build and retrofit
- 5. Case Study: AHUs in Residential Sector
- 6. Eurovent Certified Performance Program for AHUs
- 7. Moderated Discussion
- 8. Networking Dinner

Fundamentals of Air Handling Units

Martin Lenz

Group Leader R&D, Chairman PG "AHU" at Eurovent Trox GmbH, Germany

Agenda

EUROVENT

MIDDLE EAST

Controls

Selection, Quality & Operation

HVACR

Leadership Workshops

Components

Trends and things that you might not have seen before

Fans Improvement of efficiency by reducing losses at outlet side!

>5%points efficiency improvement

Legend

4 9

Fans Improvement of efficiency by reducing losses at outlet side!

- no pressure drop
- shorter overall length
- increasement of overall efficiency

Fans Improvement of efficiency by reducing losses at outlet side!

>5% efficiency improvement compared to classic solution with splitters

>3% efficiency improvement compared to stand-alone plug-fan

Fans

Improvement of efficiency by using EC-/PM-technology also for larger AHU

EUROVENT

MIDDLE EAST

Filters Selection depending on local requirements/project specific

Concentration ODA (urban distribution)

HVAC

Leadership Workshops

Filters Selection depending on local requirements/project specific

2nd filter stage

100%

Concentration downstream 2nd filter stage

Heat recovery systems

Rotors

- optimized sealing to reduce leakages
- optimized profile structure to reach high efficiencies while keeping pressure drops low

Plate heat exchangers

 optimized profile structure and low fin spaces to reach ecodesign limits

 parallel placement of cross-counter-flow exchangers

30 April 2018

Heat recovery systems

Run-around coils

- necessity of completely separated air flows
- limited space (ODA & ETA can be devited)
- multifunctional use (feeding of thermal capacity while using the coils of RAC)
- dehumidification capacity recovery by using an integrated re-heater in RACs

Controls

The secret of using high efficient components in the most efficient way

Controls for AHUs or systems

Advantages of integrated controls:

		Atual 22.0°C Atual 22.0°C Bolivert 32.3°C Solvert Office 23.3°C Solvert Office 0.3°C F1-Reg. F2ate 10.0°C Solvert Office 0.0°C F1-Reg. F2ate 10.0°C Solvert 0.0°h Solvert 0.0°h
prevention of unnecessary interfaces	system pretested	data points preconfigured
"plug & play" (especially for small units)	Image: constraint of the second se	Clean and hygiene-optimized wiring bus connection for reduced amount of cables

Controls for air handling systems

Interaction of the AHU with other HVACR equipment Exemplary fan speed control in a hotel (real data):

Controls for air handlings systems

Interaction of the AHU with other HVACR equipment Exemplary fan optimizer in a hotel (real data):

Smart controls lead to...

saving of time and stress

saving of energy

fan speed is controlled depending on position of local air flow controllers; amount of recirculation depending on local air quality and heating/cooling demand etc.

easy monitoring solutions

Selection, Quality and **Operation** < Ē т R

Make your life easy

Selection

Tailor made solutions lead to perfection in...

the choice of components

fitting to the application

Quality – Durability

Corrosion protection class according ISO 12944, production process, stainless steel etc.

HVACR Leadership Workshops

High quality components

particularly the use of good components lead to a good unit

Warranty get long-term assurance

Stability transportation, installation & maintenance

30 April 2018

Quality – Hygiene & Maintenance

Imagine you would have to clean the unit... You would not like...

- edges
- gaps
- protruding parts (screws etc.)
- small openings
- less space
- unsuitable drip trays

Quality – Hygiene & Maintenance See the difference...

Quality of technical data

Incorrect technical data lead to...

- sub-optimal selection of components
- limited comfort conditions
 - \rightarrow poor air quality
 - \rightarrow undersized thermal capacity
 - \rightarrow high sound level

Get trustful and reliable data by...

using certified components

 convince yourself in factory acceptance test

Conclusion

Never forget: The lowest power consumption can be achieved with...

...having no air handling system

But imagine there would be no ventilation in...

Get highest comfort conditions with lowest energy consumption!!!

Energy Recovery in Fresh Air Units

Arun Diwaker

Business Development Manager Desiccant Rotors International

RH Management: Dual Wheel Systems

- **OPTION I:** Rotary passive desiccant air-to-air heat exchanger coupled with dehumidification coil. (EW+CC +EH)
- **OPTION II:** Rotary passive desiccant air-to-air heat exchanger coupled with dehumidification coil and wrap around heat pipe. (EW+CC+WHP)
- **OPTION III:** Rotary passive desiccant air-to-air heat exchanger coupled with dehumidification coil and sensible air to air heat exchanger. (EW+CC+SW)
- **OPTION IV:** Rotary passive desiccant air-to-air heat exchanger coupled with dehumidification coil and passive desiccant dehumidification wheel. (EW+CC+PDHC)

HVACR Consultant Leadership Workshops

Schedule of DOAS: Enthalpy Wheel, Cooling Coil, Heater

Schedule of DOAS: Enthalpy Wheel, Cooling Coil, Heater

	1				2			3			4 4			Coolin				
Ou Co	tdoor /	Air ns	Freq. Hou rs	Off Co	Whee	l Air ns	Off Co	oil Cond	itions	Supply	y Air Cor	nditions	Retu	rn Air Co	nditions	Sensible	Total	Heater Load (Kw)
DBT °C	G/K g	Kj/K g		DBT °C	G/ Kg	Kj/K g	DBT °C	G/K g	Kj/Kg	DBT °C	G/Kg	Kj/Kg	DBT °C	G/Kg	Kj/Kg	Load (TR)	(TR)	
46	20. 46	99.1 9	0	29.8	13 .4 9	64.4 3	9	7	26.58	15	7	32.69	25	10.93	52.91	9.92	17.50	10

Psychometric Chart: Enthalpy Wheel, Cooling Coil, Heater

Enthalpy Wheel, Cooling Coil, Wrap around Heat Pipe

Enthalpy Wheel, Cooling Coil, Wrap around Heat Pipe

	1				2			3			4			5			6		Cooling Capac	Coil ity
Ou Co	tdoor nditic	Air	Freq. Hour s	Off Co	Whee	l Air ons	Pro	e Cool A ondition	lir S	Off C	Off Coil Air Conditions Conditions		Air s	Return Air Conditions			Sensible Load (TR)	Total Load (TR)		
D BT ℃	G/ K g	Kj /K g		DB T ℃	G/ K g	Kj/ Kg	DBT °C	G/K g	Kj/ Kg	DBT °C	G/Kg	Kj/Kg	DBT °C	G/K g	Kj/K g	DBT °C	G/Kg	Kj/Kg		
46	20 .4 6	99 .1 9	0	29. 81	13 .4 9	64. 43	23.5 663	13.4 9	57. 95	9	7	26.58	15.2	7.00	32.9	25	10.93	52.91	6.94	14.52

Enthalpy Wheel, Cooling Coil, Wrap around Heat Pipe

Enthalpy Wheel, Cooling Coil, Sensible Wheel

Enthalpy Wheel, Cooling Coil, Sensible Wheel

1					2			3			4			5			6		Cooli	ng Coil
Outdoor Air C	ondition	ki/k	Freq. Hours	Of (ff Wheel Condition	Air ns ki/k	Off c	oil Condi	tions Ki/K	Supply	air Cond	litions	Return	air Conc	litions	Retu C	urn air or Condition	s Ki/K	Sensible Load (TR)	Total Load (TR)
DBT °C	G/Kg	g		°C	g	g	°C	G/Kg	g	°C	g	g	°C	g	g	°C	g	g		
46	20.4 6	99.1 9	0	23. 64	13.4 9	58.2 6	9	7	26.5 8	17	7	34.7 3	25	10.9 3	52.9 1	17.0 0	10.9 3	44.6 9	6.98	14.56

Enthalpy Wheel, Cooling Coil, Sensible Wheel

Basics of Sensible Wheels

 Free Heat
Reheat Controls using VFD
Improved Energy Recovery (T of Return Air reduced)
to HRW
to HRW
From HRW
off Coil Air
Reheated Air

Enthalpy Wheel, Cooling Coil, Passive Desiccant Wheel

Enthalpy Wheel, Cooling Coil, Passive Desiccant Wheel

1					2			3			4			5			6		Cooling	Coil
Outdoor Air C	condition	s	Freq. Hour s	Of C	f Wheel Conditior	Air 15	Off c	oil Condi	tions	Supply	air Conc	litions	Return	air Conc	litions	Retu	ırn air or Conditior	n EW Is	Sensible Load (TR)	Total Load (TR)
DBT °C	G/K g	Kj/K g		DBT °C	G/K g	Kj/K g	DBT °C	G/Kg	Kj/K g	DBT °C	G/K g	Kj/K g	DBT °C	G/K g	Kj/K g	DBT °C	G/K g	Kj/K g		
46	20.4 6	99.1 9	0	25.4 6	14.8 8	64.6 4	12.2 2	8.9	34.8	17.86	7.00	35.6 1	25	10.9 3	52.9 1	19.3 6	12.8 3	51.9 3	6.31	13.29

Enthalpy Wheel, Cooling Coil, Passive Desiccant Wheel

0

Passive Desiccant Wheel

The unique passive desiccant wheel has the ability to be regenerated with the 50% RH room return air allowing for substantial moisture removal through dehumidification of the saturated (100% RH) Fresh Air being supplied to the room. This is intelligently controlled by the DRISmart EMS to regulate speed optimization for different load conditions and different outside conditions.

Advantage with G3MA "Passive" Wheel

- Removes moisture from a saturated air stream without heat/thermal regeneration
- High performance in-situ synthesized desiccant
- Fully water washable
- 100% non-flammable
- No washing away of desiccant on continued exposure to saturated/wet air

Working Principle of Heat Recovery Wheel

Energy Recovery Wheels: Essentials

- Energy Recovery Wheels Molecular Sieve MS 3Å is recommended to limit cross contamination to absolute minimum and ensure exclusion of contaminants in the air streams, while transferring water vapor molecules.
- Energy Recovery Wheels should be specially treated for prevention of any microbial growth on its surface and certified per the DIN EN ISO 846 standard, showing 0% fungi and bacterial growth.
- Certified for Zero Flame Spread requirements: NFPA–90A certification for 0% Flame spread classification and tested in accordance with NFPA 225 and ASTM–E84-95 Standard Test Method for Surface Burning.

Air Filters: ISO 16890 & Eurovent 4/23

Dani Elamani Technical Manager Camfil Middle East

30 April 2018

Agenda

ISO 16890 – the new global air filtration standard

- What are the benefits of this new standard?
- Comparison to standards EN779 & ASHRAE 52.2
- Overview of ISO 16890 filter classification

Eurovent 4/23 – how to select air filters based on ISO 16890

- In relation to local outdoor air quality (ODA)
- In relation to required supply air quality (SUP)
- Cumulated filter efficiency of multi-stage filtration

ISO 16890

Air Filters for General Ventilation

Introduction

- A significant harmonisation for the air filtration industry has been recently adopted.
- A new standard for filter testing and classification with global coverage.

ISO16890 "Air Filters for General Ventilation"

Why a new global standard? What are the customer benefits?

Recognition

Air filters positively influence air quality and human health

More intuitive

Filter efficiency and classification aligned with real world air pollution

Global applicability

Eliminate confusion

ISO 16890: Timeline

Comparison of Test Standards

	EN779:2012	ASHRAE 52.2	ISO16890
Filter test method	Testing efficiency with 0,4μm particles	Testing efficiency with 0,3- 10 μm particles. Classifications relate to results for E1, E2 & E3 efficiency classes – MERV rating	Testing efficiency with 0,3- 10 μm particles. Classifications relate to result for PM1, PM2.5 & PM10
Discharging method	Discharges filter media only, using IPA soak Tough discharging method	Discharges entire filter Using KCL salt Soft discharging method (not mandatory – App. J)	Discharges entire filter using IPA vapor Tough discharging method
Filter loading method	Dustloading with ASHRAE dust Coarse & sticky dust	Dustloading with ASHRAE dust Coarse & sticky dust	Dustloading with ISO fine dust Finer & less sticky dust
Classification system	9 Classes	16 Classes	49 classes in 4 Filter Groups

ISO16890: How Does it Work? The standard is written in four parts:

Part 1: Technical specifications, requirements and classification system. Part 2: Measurement of fractional efficiency. Part 3: Determination of the arrestance and the air flow resistance versus the mass of test dust.

Part 4:

Conditioning method to determine the minimum fractional test efficiency.

IN PRACTICE:

1 Measurement of fractional efficiency

Discharging method Gravimetric test method (optional)

HVACR Consultant Leadership Workshops

3

Classification system

Filter Classification 4 filter groups

ISO16890: Classification System

One designed in a		Class reporting		
Group designation	ePM _{1, men}	ePM _{2.5, min}	ePM ₁₀	value
ISO Coarse		-	< 50%	Initial grav. arrestance
ISO ePM10	1.00		≥ 50%	ePM ₁₀
ISO ePM2,5	_	≥ 50%	-	ePM _{2,5}
ISO ePM1	≥ 50%	-	-	ePM;

Table 4 – Filter groups

Filter Classification 3 Simple Rules:

≻ Reported efficiency – is an average between the initial and the discharged efficiency.

 \succ To be able to report – initial new efficiency needs to be over 50%.

AND

➤To be able to report – discharged efficiency needs to be over 50% (ePM1 and ePM2.5)

ISO 16890 Test Report

ISO 16890-1:2	016 - Ai	r Filter '	Fest Re		Testing Organization: RISE Research Institute of Sweden Brinellgatan 4, 501 15 Boris, Swedan +460105165000				
GENERAL		9						1.0000000000000000000000000000000000000	
Report no: 6P0757	7-25-rev1	Date of te	sts:	2017-02-16	- 2013	-02-23		Date of prpce	r: 2017-03-02
Supervisor CM			Device	e obtain	ed (when and h	sow obtained):			
Test(s) requested by:			The d	levice 1	was sent and o	obtained on 2017-02-14			
DEVICE TESTED	10.000			12		1461104		Protest and	or to all shares which have to all shares of the second second second second second second second second second
Model: Hi Flo I XLT 7/640 50+ (HPG))	Manufacturer Camfil AB				Construction: Pocket filter, 10 Pockets			
Article number: 610165	40.003×0	Type of a Glass	edum	Net effective 7	e filtering area 3 m ²			Filter damens 592x592x64	ions (width xheight xdepth) 0 mm
TEST DATA AND /	ATTACHEI	D TEST RI	PORTS						
Test ag flow rate:	Test aers	ole:	Test rep	ort to ISO 168	90-2		_	Report no.	6P07577-25-rev1 Appendix 2
0.944 m ³ /s	KC1(1-1	(mu 01	Test rep	ort to ISO 168	90-3 (option	aD.		Report no.	6P07577-25-rev1 Appendix 3
2096-92063	DEHS (0.3+1 µm)	Test rep	ort to ISO 168	90-4	100		Report no.	6P07577-25-rev1 Appendix 4
RESULTS									
Initial pressure differential 72 Pa		Initial gro	r. arrestance	r 97 96	ePM1.aas	PM _{1,aas} 63 %		5.ma 73.9k	150 niting
Final test pressure differential 30 April 2018 300 Pa		Test dust	capacity 11	VACR Consul	tant Leader	ship We	orksho	ePM10 91 %	ISO cPM 1 60 %

66

Eurovent 4/23

Selection of ISO 16890 rated Air Filters for General Ventilation Applications

Eurovent 4/23

- Recommendation for the selection of ISO 16890 rated air filters for general ventilation applications
- Developed in a joint effort by the participants of the Eurovent Product Group 'Air Filters'
- Published on 09 January 2018

Introduction Impact on Health

PM10	PM2.5	PM1			
Particles 10 µm in diameter or smaller can reach the respiratory ducts and potentially cause decreased lung function.	Particles 2.5 µm in diameter or smaller can penetrate the lungs and cause decreased lung function, skin and eye problems.	Particles 1 µm in diameter or smaller are most dangerous. They are tiny enough to enter the bloodstream and lead to cancer, cardiovascular diseases and dementia.			

HVACR Leadership

Workshops

Outdoor Air (ODA) -How clean is my Outdoor Air?

- 3 Outdoor Air Classes (ODA 1-3)
- Based on WHO Tresholds:
- Annual mean for PM2.5 < 10 µg/m3
- Annual mean for PM10 < 20 µg/m3

	Category	Description	Typical environment
	ODA 1	OUTDOOR AIR, WHICH MAY BE ONLY TEMPORARILY DUSTY Applies where the World Health Organisation WHO (2005) guidelines are fulfilled (annual mean for PM2.5 \leq 10 µg/m ³ and PM10 \leq 20 µg/m ³).	
)DA ds: <	ODA 2	OUTDOOR AIR WITH HIGH CONCENTRATIONS OF PARTICULATE MATTER Applies where PM concentrations exceed the WHO guidelines by a factor of up to 1.5 (annual mean for PM2.5 \leq 15 µg/m ³ and PM10 \leq 30 µg/m ³).	
< 20	ODA 3	OUTDOOR AIR WITH VERY HIGH CONCENTRATIONS OF PARTICULATE MATTER	and an Aller

exceed the WHO guidelines by a factor of greater than 1,5 (annual mean for

PM2.5 > 15 μ g/m³ and PM10 > 30 μ g/m³].

30 April 2018

70

Supply Air Classes (SUP)

SUP 1	refers to supply air with concentrations of particulate matter which fulfilled the WHO [2005] guidelines limit values multiplied by a factor x 0,25 [annual mean for PM2.5 \leq 2.5 µg/m ³ and PM10 \leq 5 µg/m ³].
SUP 2	refers to supply air with concentrations of particulate matter which fulfilled the WHO (2005) guidelines limit values multiplied by a factor x 0.5 (annual mean for PM2.5 \leq 5 µg/m ³ and PM10 \leq 10 µg/m ³).
SUP 3	refers to supply air with concentrations of particulate matter which fulfilled the WHO (2005) guidelines limit values multiplied by a factor x 0,75 (annual mean for PM2.5 \leq 7.5 µg/m ³ and PM10 \leq 15 µg/m ³).
SUP 4	refers to supply air with concentrations of particulate matter which fulfilled the WHO [2005] guidelines limit values (annual mean for PM2.5 \leq 10 µg/m ³ and PM10 \leq 20 µg/m ³).
SUP 5	refers to supply air with concentrations of particulate matter which fulfilled the WHO [2005] guidelines limit values multiplied by factor x 1.5 (annual mean for PM2.5 \leq 15 µg/m ³ and PM10 \leq 30 µg/m ³).

Examples for Supply Air Classes (SUP)

CATEGORY	GENERAL V	ENTILATION	CATEGORY	INDUSTRIAL VENTILATION					
SUP 1	-	5	SUP 1	Applications with high hygienic demands. Examples: Hospitals, pharmaceutics, electronic and optical industry, supply air to clean rooms.					
SUP 2	Rooms for permanent occupation. Example: Kindergardens, offices, hotels, residential buildings, meeting rooms, exhibition halls, conference halls, theaters, cinemas, concert halls.		SUP 2	Applications with medium hygienic demands. Example: Food and beverage production.					
SUP 3	Rooms with temporary occupation. Examples: Storage, shopping centers, washing rooms, server rooms, copier rooms.		SUP 3	Applications with basic hygienic demands. Example: Food and beverages production with a basic hygienic demand.					
SUP 4	Rooms with short-term occupation. Examples restrooms, storage rooms stairways.		SUP 4	Applications without hygienic demands. Example: General production areas in the automotive industry.					
SUP 5	Rooms without occupation. Examples: Garbage room, data centers, underground car parks.		SUP 5	Production areas of the heavy industry. Examples: Steel mill, smelters, welding plants.					

Recommended Minimum Efficiency

			SUPPLY AIR				
(OUTDOOR AIR		SUP 1* PM2.5 ≤ 2.5 PM10 ≤ 5	SUP2* PM2.5 ≤ 5 PM10 ≤ 10	SUP3** PM2.5 ≤ 7.5 PM10 ≤ 15	SUP4 PM2.5 ≤ 10 PM10 ≤ 20	SUP5 PM2.5 ≤ 15 PM10 ≤ 30
Category	PM2.5	PM10	ePM ₁	ePM ₁	ePM _{2.5}	ePM ₁₀	ePM ₁₀
ODA 1	isi 10 ∶	≤ 20	60%	50%	60%	60%	50%
ODA 2	≤ 15	≤ 30	80%	70%	70%	80%	60%
ODA 3	> 15	> 30	90%	80%	80%	90%	80%

Table 3: Recommended min. ePMx filtration efficiencies depending on ODA and SUP category. Annual mean PMx values in µg/m3

- Minimum filtration requirements ISO ePM₁ 50% refer to a final filter stage
- ** Minimum filtration requirements ISO ePM2 5 50% refer to a final filter stage

Presented efficiency values concern both single filter and multi-stage filtration systems with a cumulated efficiency.

Multi-Stage Filtration Estimation of cumulated efficiency

To facilitate rough estimations, it is recommended to use the following formula to determine the combined filtration efficiency for respective particle size fractions:

$$ePM_{x, cum} = 100 \cdot \left(1 - \left(\left(1 - \frac{ePM_{x, s1}}{100}\right) \cdot \left(1 - \frac{ePM_{x, s2}}{100}\right) \cdots \left(1 - \frac{ePM_{x, sn+1}}{100}\right)\right)\right)$$

Where

30 April 2018

Multi-Stage Filtration Estimation of cumulated efficiency

Office in Dubai: ODA 3 & SUP 2 = min. ePM1 80%

Stage 1 ePM1 60% Stage 2 ePM1 60%

ePM1 _{cum} = 100 x (1-
$$(1 - \frac{60}{100})$$
 x $(1 - \frac{60}{100})$) = 84%

Summary

- ISO16890 is a new global standard for testing and classification of air filters
- It brings clear benefits for specifiers, purchasers and users of air filters
- Selecting ePM1 filters will result in improved air quality and lower health risk
- Eurovent 4/23 merges theoretical and practical aspects of designing Indoor Air Quality in terms of air filtration
- Eurovent 4/23 provides hands on and effective advice for HVAC planners and manufactures of ventilation equipment to correctly design filtration

EC Technology for AHUs: New-Build and Retrofit

John Fernandez

Managing Director ebm-papst Middle East

Overview

- What is an EC Plug Fan?
- Electronically-Commutated (EC) Motor Technology
- Variable Speed Drive (VSD) and Control Options
- Backward-Curved Impeller Design
- Fan Array Applications

What is an EC Plug Fan?

A Plug-and-Play Air Movement System

EC Motor Technology Motor Construction

EC Motor Technology High Efficiency – Low Heat Losses

- Motor Efficiency up to 95%
- Low "Copper Losses"
 ✓ Optimum Winding Design
 ✓ Low Overhang
- Low "Iron Losses"
 ✓ Use of Permanent Magnets
 ✓ No Hysteresis Loss
- Synchronous Operation
 ✓ No Slip Losses

EC Motor Technology

Comparative Efficiency

HVACR Consultant Leadership Workshops

Variable Speed Drives (VSD)

Integrated Control Electronics

AC/DC Supply Management

- Rectification & Smoothing
- Passive/Active PFC
- EMC Filtration

Safety Functions

- Locked Rotor Protection
- Phase Failure Detection
- Over-temperature Protection
- Infinitely-Variable Speed Control
 - Closed-Loop Sensor Control
 - Open Loop Control
- BMS, Alarm, Network Integration

Backward-Curved Impeller Design The Focus of Recent R&D

Component Efficiency (%)

Standard Design

High Performance

Low Noise

HVACR Leadership Workshops

Backward-Curved Impeller Design Fan Efficiency (η_e)

Multiple Fans Operated in Parallel Fan Array/Grid Concept

- "FANWALL Technology"
 - Registered Trademark of Huntair
 - Certain Control Elements Patented
- High Air Flows/Reduced Footprint
- Built-in Redundancy
- Optimum Air Distribution
- Noise Reduction
- Higher Efficiency

Summary

- EC Plug Fans "Plug-and-Play" Air Movement Systems
- High Energy Efficiency
- Maintenance-Free, Long Service Life
- Integrated Controls and Network Capabilities
- Fan Efficiency (η_{e}) The True Measure of Fan Performance
- Fan Array Applications Additional Performance Benefits

Upgrading to EC Fans

James Cooper

Product Manager ebm-papst UK

Upgrade Process

- 1. Site Survey
- 2. Estimate savings
- 3. Metered trial Installation
- 4. Site roll-out

HVACR Leadership

Case Studies

UBS Datacentre, Ernst & Young HQ, M&S Condenser, Birmingham Airport

UBS Datacenter Upgrade Process

76 CRAC Units in total (2 manufacturers)

- 39 Liebert 14UC units
- 21 Liebert 10UC units
- 16 Stulz CCD900CW
- Equipment Age: 2006
- Control Strategy measuring return air temperature

- Only one unit off at any one time
- Live data centre environment
- Protection of site operatives
- Restricted site access
- Equipment protection
- Work scheduled for a 4 month period
- Access to 3 data halls at one time

Contamination Protection

2

Liebert 14UC measurements

Triple fan system – Ziehl Abegg direct drive AC centrifugal fans

AC fans:

Absorbed power @ 100% 10.48kW Absorbed power @ 80% 6.18kW

EC fans:

Absorbed power @ 100% 5.36kW Absorbed power @ 80% 3.8kW

HVACR Consultant Leadership Workshops

c

Liebert 10UC measurements

Twin fan system – Ziehl Abegg direct drive AC centrifugal fans

AC fans:

Absorbed power @ 100% 7.2kW Absorbed power @ 80% 5.2kW

EC fans:

Absorbed power @ 100% 4.4kW Absorbed power @ 80% 2.9kW

30 April 2018

HVACR Consultant Leadership Workshops

Stulz CCD900CW measurements

Twin double inlet blowers – belt drive

AC fans:

Absorbed power @ 100% 5.4kW

EC fans:

Absorbed power @ 100% 4.3kW Absorbed power @ 80% 2.2kW

Stulz unit upgrade – floor mounted

Removal of Fan Assay

Suspended Fans within

Floor Void

Network Posse

Project Paybacks

Liebert 14UC

- 39 units
- 49% energy saving
- Total annual energy cost saving £175k
- Annual Carbon reduction 261 tonnes
- Annual CO₂ reduction 957 tonnes
- Payback 1.04 years 30 April 2018

Liebert 10UC

- 21 units
- 39% energy saving
- Total annual energy cost saving £52k
- Annual Carbon reduction 77 tonnes
- Annual CO2 reduction 281 tonnes
- Payback 1.4 years

Project Paybacks

Stulz CCD900CW set to 80% speed control

- 16 units
- 59% energy saving
- Total annual energy cost saving £45k
- Annual Carbon reduction 67 tonnes
- Annual CO₂ reduction 245 tonnes
- Payback 1.48 years

Power Graph in Upgrade Period

Hayes DC Essential Power of Switchboards Serving DFUs

Time recordings in 15minute intervals

HVACR Consultant Leadership Workshops

Company HQ Building, London Fan Coil Units

Aims:

- Reduce energy consumption of HVAC equipment
- Reduce maintenance
- Increase controllability

Scope:

- 10 floor building
- Total ~ 1200 FCU's

Problem with existing FCU's

- AC fan motors, coming to end of life
- Poor speed control function
- No monitoring

Case Study – Fan Coil Units

<u>AC Fan Decks</u> 49 FCU's / wing each floor. Total ~ 1200 units

2 sizes of FCU

- Small (208)
- Large (212)

4 speed settings (manual)

EC Fan Decks

Small unit - (2 x D3G133) Large unit - (3 x D3G133)

Variable speed control – Via 0 – 10v

30 April 2018

Case Study – Fan Coil Units

Trial - Floor 2 east wing

FCU Installation:

Case Study – Fan Coil Unit

Measurements

- Single Fan coil was measured for 1 week prior to fitting EC fans
- This showed that a constant power draw was maintained during running hours.
- Average ~ 250w

Power measurements before - 212 model

Case Study – Fan Coil Units

Spot Measurements taken on individual FCU's before and after the EC fans fitted.

	Large unit	Small Unit
AC fan deck (W)	247	150
EC fan deck (W)	49	54
Saving (W)	198	96
% saving	80%	64%

Power draw / FCU

Power Draw per unit (w)

AC Fans fitted

Case Study – Fan Coil Units

Forecast Annual savings:

Operating Hours: 12h/day, 260d/year

Energy Cost: £0.085 / kWh CRC cost: £15.60 / t

	Floor 2 East Wing	Total Building
Qty of Units	49	1200
Run time (hrs / year)	3,120	3,120
AC fan deck (kW)	10,066	246,514
EC fan deck (kW)	2,506	61,371
Annual Savings		
% Saving	75%	75%
Power kWh	23,587	577,641
Power (£)	£2,000	£49,000
CRC (£)	£194	£4,800
Total Financial Saving	£2,194	£53,800
CO ₂ (T)	12	303
С (Т)	3	83

M&S Condenser Upgrade

Residential AHU application with VRV

Utpal Joshi Head – VRV DX consulting Sales Daikin Middle East

Agenda

- 1. F/AHUs in Residential sector
- 2. System build up of F/AHU + VRV combination
- 3. Design Precautions
- 4. Case study : 500 MBR Villas with integrated FAHU
- 5. Popularity of VRV in residential sector

AHUs in Residential Sector Case Study

FAHU use

Traditionally FAHUs are used in building to supply Treated fresh air to meet Building Codes, they are either

Connected to Chilled water

or DX outdoor units

Issues faced

- Chiller or Dx supplied by one party
- AHU by Specialist supplier
- Controls by 3rd party
- Integration is difficult for Contractor
- Owner / operator faces difficulty in maintenance

Solution?

- One supplier Supplying complete system FAHU, Condensing unit and controls
- Engineered products to meet High Ambient conditions
- Energy Efficient Heat recovery options

Leadership Workshop

Integrated Electrical Control Panel

DX Evaporator refrigerant pipe connections to VRV Outdoor unit DAIKIN

Temperature Sensors factory fitted

HVACR Leadership Workshops

FAHUs - Choices

 FAHU with Heat recovery + HS Heat pipe

More efficient – Double Heat Wheel

COOLING CO	OIL CAPACITY	25									
HW+HPD	HW+HW	20 -	-	+	+	+				-	
203	191.3							+	+	-	
198.3	175.8	15								_	
184.9	154.2										-+HW+HPD
231.8	194.2	10									HW+HW
200.1	158.4										
183.4	140.6	1									
130.7	95	0									
84.7	72		1	2	3	4	5	6	7	8	

SUPPLY TEMP						
HW+HPD	HW+HW					
20.5	21.3					
20.2	21.3					
19.8	21.3					
19.4	21.3					
19	21.3					
18.6	21.3					
18.3	21.3					
17.3	21.3					

30 April 2018

 DX (Direct Expansion) Condensing Units More efficient – VRV Condensing units

POAIKIN	
1.	
ma	

Item	DX	VRV		
Air Flow	15000 l/s	15000 l/s		
Model	ERAD	RXYTQ16		
Cooling Cap	343 kW	350		
kW	149.9	110.1		
Run hrs Per month	480	480		
Elec Rate	0.38	0.38		
Running Costs	27342	20082.24		
Savings Per month	-7260			

Approx. 100 TR DX v/s VRV Running cost comparison

Design Precautions

Design Precautions

- Always use Electronic Exp Valve, No Thermostatic Exp. Valves
- For space planning of Outdoor units (per 10 TR)
- 1 m² Foot Print + 1 m² Service space = 2 m²
- DM is asking for Winter selection for FAHU at 34 /32C Please select Outdoor at 46/29 and cross check the capacity at 35 with winter selection to avoid oversizing
- Energy Efficient Heat recovery options Double heat wheel
- VRV Outdoor unit is expensive option but ROI is 1-2 years so take wise decision.
- Always ask for Plug-n Play solution where one supplier is supplying the full system.

System build up of F/AHU + VRV combination

Seasonal Efficiency Real life operating conditions

High-ambient VRV with AHU / FAHU

HVACR Leadership Workshops

Bigger configuration

Recommended Configuration

- 240 kW Max (96 HP)
- 4 interlaced coils
- 60 kW per Electronic Expansion Valve/circuit
- Needs controller per expansion valve
- Use EC fans
- Plug n Play

HVAC

Leadership Workshops

Case study: 500 MBR Villas with integrated FAHU

500 Villas At MBR City

Villa Configuration

- 422 m2 Villa
- 56 kW
- 24 HP (2 ODU system)
- 12 indoor + FAHU 400 Lps
- Home Automation
- No Daikin Theromostat

Traditional FAHU system with dedicated

Two separate systems

Case Study: MBR City

Original Design

- Villas were Designed earlier on two Packaged unit serving each floor
- Fresh air was added to each packaged unit
- No heat recovery of exhaust
- EER les than 3.0
- Each room control was difficult with use of VA

Improvements

- Villas AC design was changed to VRV system with separate indoor unit for each room
- Two outdoor in roof only
- Special Fresh Air handling unit (height 1100mm) with baby heat wheel recovery + HS heat Pipe was introduced
- Integration with Home automation without thermostat.

FAHU with heat recovery

Control & Elec Panel

		Туре	Q ty (Nos)	Unit Referenc	Outdoor Ref	ТН (kW)	SH (kW)	Supply	тн (kW)	SH (kW)	ESP range (Pa)	Model No.	Туре	Dimentions WXHXD (mm)	Power Input (W)	Total(Model No.	Dimentions WXHXD (mm)	Weigh t (kg)
Г																			
Г	1	M5A	8	VRV-IU-G1	VRV-ODU-1	7.7	5.7	383	7.8	5.8	30-150	FXSQ80	Ducted	1000x245x800	0.121	28.7	28.7 RXYTQ16T 124	1240x1685x765	310
E	2			VRV-IU-G2		3.3	2.6	208	3.9	3	30-150	FXSQ40	Ducted	700x245x800	0.092				
Γ	3			VRV-IU-G3		2.6	1.9	158	3.2	2.4	30-150	FXSQ32	Ducted	550x245x800	0.045				
Γ	4			VRV-IU-G6		0.8	0.7	83	2	1.7		FXAQ20	Decorative	795x290x238	0.019				
E	5			VRV-IU-G7		1	0.9	83	2	1.7		FXAQ20	Decorative	795x290x238	0.019				
Г	6			VRV-IU-F1		4.4	3.6	253	4.9	3.7	30-150	FXSQ50	Ducted	700x245x800	0.095				
E	7			VRV-IU-F2		2.9	2.3	158	3.2	2.4	30-150	FXSQ32	Ducted	550x245x800	0.045				
E	8			VRV-IU-F3		3.9	3.4	253	4.9	3.7	30-150	FXSQ50	Ducted	700x245x800	0.095				
L	9			VRV-IU-F6		3.4	2.9	208	3.9	3	30-150	FXSQ40	Ducted	700x245x800	0.092				
E	10			VRV-IU-G4	VRV-ODU-2	3.3	2.3	208	3.9	3	30-150	FXSQ40	Ducted	700x245x800	0.092	22.4	RXYTQ10T	1240x 1685x 765	233
E	11			VRV-IU-G5		2.7	2	158	3.2	2.4	30-150	FXSQ32	Ducted	550x245x800	0.045				
L	12			VRV-IU-F5		3	2.6	208	3.9	3	30-150	FXSQ40	Ducted	700x245x800	0.092				
C	13]		VRV-IU-F4		2.2	1.8	108	2.5	1.8	30-150	FXSQ25	Ducted	550x245x800	0.041				
Г	14			FAHU-1		9.45	-	n/a	9.9	n/a		680 X740				1			

Technological Breakthrough:

One Refrigerant system having two different Refrigerant Temperature (Indoor unit and FAHU at Different Temperature)

Risk Mitigated with heat recovery and HSHP and with special factory settings change.

Popularity of VRV in residential sector

Subtitle, additional information

VRV projects

VRV has successfully covered small, medium and large scale project answering to the customer needs.

What are the needs of Customer?

- Simple Solution
- VRV + FAHU by one Company
- Low DEWA Bills
- VRV + FAHO by one Co
 1.2 kW/TR peak Load
- Easy to install
- Flexible spacing
- (0.75NPLV)Plug n Play + copper piping
- Flexible spacing of outdoors

Large VRV Projects with FAHU

Eurovent Certified Performance Air Handling Units

Brian Suggitt Chairman Eurovent Middle East

Eurovent Certification

- Eurovent Certification certifies the performance ratings of airconditioning and refrigeration products according to European and international standards.
- The objective is to build up customer confidence by leveling the competitive playing field for all manufacturers by increasing the integrity and accuracy of the industrial performance ratings.

Eurovent Certification

Please note!

- ECP tests and verifies the performance of a product
- Always check back with the database of Eurovent Certification to make sure the product holds a valid certification
- Eurovent Ratings give you an indication of the efficiency of a product
- ECP does NOT equal a quality mark!

Thermal Transmittance

Class	Heat Conduction Coefficient W/m ² K	Panel Quality	Condensation Risk
T1	U≤0 <i>,</i> 5	Highest	Very Low
T2	0,5 <u≤1,0< td=""><td>High</td><td>Low</td></u≤1,0<>	High	Low
Т3	1,0 <u≤1,4< td=""><td>Medium</td><td>Medium</td></u≤1,4<>	Medium	Medium
T4	1,4 <u≤2,0< td=""><td>Low</td><td>High</td></u≤2,0<>	Low	High
T5	Not Required	Very Low	Highest

- Test Result based on Heat Conduction Coefficient of Panels
- Depends on panel thickness, insulation material and panel sheet thickness.

Thermal Bridging Factor

Class	Thermal Bridging Factor k _b	Panel Quality	Condensation Risk
TB1	0,75 ≤ k _b < 1	Highest	Very Low
TB2	$0,60 \le k_b < 0,75$	High	Low
TB3	$0,45 \le k_b < 0,60$	Medium	Medium
TB4	$0,30 \le k_b < 0,45$	Low	High
TB5	Not Required	Very Low	Highest

- Test result is based on weakest point, where there is maximum thermal leakage.
- If the metal-metal contact between inside and outside of the unit is prevented, the bridging factor therefore increases.

Casing Strength Maximum Deflection **Resistance to Max. Fan** Class mm/m **Operating Pressure** D1(M) Yes 4 D2(M) 10 Yes D3(M) Not Required Yes

- Maximum deflection after a test pressure of ±1000 Pa
- The remaining deflection after a test pressure of ±2500 Pa must be less than 2 mm.

Casing Air Leakage

Class	Maximum Leakage (-400 Pa) L x s ⁻¹ x m ⁻²	Maximum Leakage (+700 Pa) L x s ⁻¹ x m ⁻²	
L1	0,15	0,22	
L2	0,44	0,63	
L3	1,32	1,90	

- Sections working under negative pressure tested at test pressure of -400 Pa
- Sections working under positive pressure tested at test pressure of +700 Pa
- NOTE : the air leakage test is undertaken immediately after the casing strength test

Filter By-pass Air Leakage									
Class	G1-F5	F6	F7	F8	F9				
Bypass Leakage Factor %	6	4	2	1	0,5				

- Shows the bypass air ratio that is not filtered and leaked through filter sides
- Usable filter class must be equal or above this class

Energy Efficiency Reference Chart

01.400	All Units	Units for full or p at design winter	bartial outdoor air temperature ≤ 9°C	
CLASS	Velocity vctass [m/s]	Heat recov η _{class} [%]	Fan Efficiency Grade NGret-class [-]	
A+/A+G/A+1	1.4	83	250	64
A/AG/AT	1.6	78	230	62
B/BG/Bt	1.8	73	210	60
C/CG/Cf	2.0	68	190	57
D/DG/DT	2.2	63	170	52
E/EG/ET		No requirement		

Illustration of AHU Energy Efficiency Label

Dynamic Rating System

Watch out for the year!

Summary

- Certification Schemes help you to select and rely on products
- Certification Schemes are complex and need to be fully understood to make the right use of them
- Safety, Quality, Performance, Fire Safety and many other aspects are certified by different bodies and different schemes
- Certificates loose their validity after a certain period
- Always cross check with the certifying body!

Moderated Discussion

Markus Lattner Director Eurovent Middle East

Workshop Partners

DAIKIN

The engineer's choice

TROX[®]TECHNIK The art of handling air

UNDER THE PATRONAGE OF

Hotel Partner

Le MERIDIEN

Thank you!